1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
#![no_std]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#![warn(missing_docs, rust_2018_idioms, unused_qualifications)]
//! Securely zero memory with a simple trait ([`Zeroize`]) built on stable Rust
//! primitives which guarantee the operation will not be "optimized away".
//!
//! ## About
//!
//! [Zeroing memory securely is hard] - compilers optimize for performance, and
//! in doing so they love to "optimize away" unnecessary zeroing calls. There are
//! many documented "tricks" to attempt to avoid these optimizations and ensure
//! that a zeroing routine is performed reliably.
//!
//! This crate isn't about tricks: it uses [`core::ptr::write_volatile`]
//! and [`core::sync::atomic`] memory fences to provide easy-to-use, portable
//! zeroing behavior which works on all of Rust's core number types and slices
//! thereof, implemented in pure Rust with no usage of FFI or assembly.
//!
//! - No insecure fallbacks!
//! - No dependencies!
//! - No FFI or inline assembly! **WASM friendly** (and tested)!
//! - `#![no_std]` i.e. **embedded-friendly**!
//! - No functionality besides securely zeroing memory!
//! - (Optional) Custom derive support for zeroing complex structures
//!
//! ## Minimum Supported Rust Version
//!
//! Requires Rust **1.51** or newer.
//!
//! In the future, we reserve the right to change MSRV (i.e. MSRV is out-of-scope
//! for this crate's SemVer guarantees), however when we do it will be accompanied
//! by a minor version bump.
//!
//! ## Usage
//!
//! ```
//! use zeroize::Zeroize;
//!
//! fn main() {
//! // Protip: don't embed secrets in your source code.
//! // This is just an example.
//! let mut secret = b"Air shield password: 1,2,3,4,5".to_vec();
//! // [ ... ] open the air shield here
//!
//! // Now that we're done using the secret, zero it out.
//! secret.zeroize();
//! }
//! ```
//!
//! The [`Zeroize`] trait is impl'd on all of Rust's core scalar types including
//! integers, floats, `bool`, and `char`.
//!
//! Additionally, it's implemented on slices and `IterMut`s of the above types.
//!
//! When the `alloc` feature is enabled (which it is by default), it's also
//! impl'd for `Vec<T>` for the above types as well as `String`, where it provides
//! [`Vec::clear`] / [`String::clear`]-like behavior (truncating to zero-length)
//! but ensures the backing memory is securely zeroed with some caveats.
//!
//! With the `std` feature enabled (which it is **not** by default), [`Zeroize`]
//! is also implemented for [`CString`]. After calling `zeroize()` on a `CString`,
//! its internal buffer will contain exactly one nul byte. The backing
//! memory is zeroed by converting it to a `Vec<u8>` and back into a `CString`.
//! (NOTE: see "Stack/Heap Zeroing Notes" for important `Vec`/`String`/`CString` details)
//!
//!
//! The [`DefaultIsZeroes`] marker trait can be impl'd on types which also
//! impl [`Default`], which implements [`Zeroize`] by overwriting a value with
//! the default value.
//!
//! ## Custom Derive Support
//!
//! This crate has custom derive support for the `Zeroize` trait,
//! gated under the `zeroize` crate's `zeroize_derive` Cargo feature,
//! which automatically calls `zeroize()` on all members of a struct
//! or tuple struct.
//!
//! Attributes supported for `Zeroize`:
//!
//! On the item level:
//! - `#[zeroize(drop)]`: *deprecated* use `ZeroizeOnDrop` instead
//! - `#[zeroize(bound = "T: MyTrait")]`: this replaces any trait bounds
//! inferred by zeroize
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Attributes supported for `ZeroizeOnDrop`:
//!
//! On the field level:
//! - `#[zeroize(skip)]`: skips this field or variant when calling `zeroize()`
//!
//! Example which derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::{Zeroize, ZeroizeOnDrop};
//!
//! // This struct will be zeroized on drop
//! #[derive(Zeroize, ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which does not derive `Drop` (useful for e.g. `Copy` types)
//!
//! ```
//! #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::Zeroize;
//!
//! // This struct will *NOT* be zeroized on drop
//! #[derive(Copy, Clone, Zeroize)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! Example which only derives `Drop`:
//!
//! ```
//! # #[cfg(feature = "zeroize_derive")]
//! # {
//! use zeroize::ZeroizeOnDrop;
//!
//! // This struct will be zeroized on drop
//! #[derive(ZeroizeOnDrop)]
//! struct MyStruct([u8; 32]);
//! # }
//! ```
//!
//! ## `Zeroizing<Z>`: wrapper for zeroizing arbitrary values on drop
//!
//! `Zeroizing<Z: Zeroize>` is a generic wrapper type that impls `Deref`
//! and `DerefMut`, allowing access to an inner value of type `Z`, and also
//! impls a `Drop` handler which calls `zeroize()` on its contents:
//!
//! ```
//! use zeroize::Zeroizing;
//!
//! fn main() {
//! let mut secret = Zeroizing::new([0u8; 5]);
//!
//! // Set the air shield password
//! // Protip (again): don't embed secrets in your source code.
//! secret.copy_from_slice(&[1, 2, 3, 4, 5]);
//! assert_eq!(secret.as_ref(), &[1, 2, 3, 4, 5]);
//!
//! // The contents of `secret` will be automatically zeroized on drop
//! }
//! ```
//!
//! ## What guarantees does this crate provide?
//!
//! This crate guarantees the following:
//!
//! 1. The zeroing operation can't be "optimized away" by the compiler.
//! 2. All subsequent reads to memory will see "zeroized" values.
//!
//! LLVM's volatile semantics ensure #1 is true.
//!
//! Additionally, thanks to work by the [Unsafe Code Guidelines Working Group],
//! we can now fairly confidently say #2 is true as well. Previously there were
//! worries that the approach used by this crate (mixing volatile and
//! non-volatile accesses) was undefined behavior due to language contained
//! in the documentation for `write_volatile`, however after some discussion
//! [these remarks have been removed] and the specific usage pattern in this
//! crate is considered to be well-defined.
//!
//! Additionally this crate leverages [`core::sync::atomic::compiler_fence`]
//! with the strictest ordering
//! ([`Ordering::SeqCst`]) as a
//! precaution to help ensure reads are not reordered before memory has been
//! zeroed.
//!
//! All of that said, there is still potential for microarchitectural attacks
//! (ala Spectre/Meltdown) to leak "zeroized" secrets through covert channels.
//! This crate makes no guarantees that zeroized values cannot be leaked
//! through such channels, as they represent flaws in the underlying hardware.
//!
//! ## Stack/Heap Zeroing Notes
//!
//! This crate can be used to zero values from either the stack or the heap.
//!
//! However, be aware several operations in Rust can unintentionally leave
//! copies of data in memory. This includes but is not limited to:
//!
//! - Moves and [`Copy`]
//! - Heap reallocation when using [`Vec`] and [`String`]
//! - Borrowers of a reference making copies of the data
//!
//! [`Pin`][`core::pin::Pin`] can be leveraged in conjunction with this crate
//! to ensure data kept on the stack isn't moved.
//!
//! The `Zeroize` impls for `Vec`, `String` and `CString` zeroize the entire
//! capacity of their backing buffer, but cannot guarantee copies of the data
//! were not previously made by buffer reallocation. It's therefore important
//! when attempting to zeroize such buffers to initialize them to the correct
//! capacity, and take care to prevent subsequent reallocation.
//!
//! The `secrecy` crate provides higher-level abstractions for eliminating
//! usage patterns which can cause reallocations:
//!
//! <https://crates.io/crates/secrecy>
//!
//! ## What about: clearing registers, mlock, mprotect, etc?
//!
//! This crate is focused on providing simple, unobtrusive support for reliably
//! zeroing memory using the best approach possible on stable Rust.
//!
//! Clearing registers is a difficult problem that can't easily be solved by
//! something like a crate, and requires either inline ASM or rustc support.
//! See <https://github.com/rust-lang/rust/issues/17046> for background on
//! this particular problem.
//!
//! Other memory protection mechanisms are interesting and useful, but often
//! overkill (e.g. defending against RAM scraping or attackers with swap access).
//! In as much as there may be merit to these approaches, there are also many
//! other crates that already implement more sophisticated memory protections.
//! Such protections are explicitly out-of-scope for this crate.
//!
//! Zeroing memory is [good cryptographic hygiene] and this crate seeks to promote
//! it in the most unobtrusive manner possible. This includes omitting complex
//! `unsafe` memory protection systems and just trying to make the best memory
//! zeroing crate available.
//!
//! [Zeroing memory securely is hard]: http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
//! [Unsafe Code Guidelines Working Group]: https://github.com/rust-lang/unsafe-code-guidelines
//! [these remarks have been removed]: https://github.com/rust-lang/rust/pull/60972
//! [good cryptographic hygiene]: https://github.com/veorq/cryptocoding#clean-memory-of-secret-data
//! [`Ordering::SeqCst`]: core::sync::atomic::Ordering::SeqCst
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "zeroize_derive")]
#[cfg_attr(docsrs, doc(cfg(feature = "zeroize_derive")))]
pub use zeroize_derive::{Zeroize, ZeroizeOnDrop};
#[cfg(all(feature = "aarch64", target_arch = "aarch64"))]
mod aarch64;
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86;
use core::{
marker::{PhantomData, PhantomPinned},
mem::{self, MaybeUninit},
num::{
self, NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize,
NonZeroU128, NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize,
},
ops, ptr,
slice::IterMut,
sync::atomic,
};
#[cfg(feature = "alloc")]
use {
alloc::{boxed::Box, string::String, vec::Vec},
core::slice,
};
#[cfg(feature = "std")]
use std::ffi::CString;
/// Trait for securely erasing values from memory.
pub trait Zeroize {
/// Zero out this object from memory using Rust intrinsics which ensure the
/// zeroization operation is not "optimized away" by the compiler.
fn zeroize(&mut self);
}
/// Marker trait signifying that this type will [`Zeroize::zeroize`] itself on [`Drop`].
pub trait ZeroizeOnDrop {}
/// Marker trait for types whose [`Default`] is the desired zeroization result
pub trait DefaultIsZeroes: Copy + Default + Sized {}
/// Fallible trait for representing cases where zeroization may or may not be
/// possible.
///
/// This is primarily useful for scenarios like reference counted data, where
/// zeroization is only possible when the last reference is dropped.
pub trait TryZeroize {
/// Try to zero out this object from memory using Rust intrinsics which
/// ensure the zeroization operation is not "optimized away" by the
/// compiler.
#[must_use]
fn try_zeroize(&mut self) -> bool;
}
impl<Z> Zeroize for Z
where
Z: DefaultIsZeroes,
{
fn zeroize(&mut self) {
volatile_write(self, Z::default());
atomic_fence();
}
}
macro_rules! impl_zeroize_with_default {
($($type:ty),+) => {
$(impl DefaultIsZeroes for $type {})+
};
}
#[rustfmt::skip]
impl_zeroize_with_default! {
bool, char,
f32, f64,
i8, i16, i32, i64, i128, isize,
u8, u16, u32, u64, u128, usize
}
macro_rules! impl_zeroize_for_non_zero {
($($type:ty),+) => {
$(
impl Zeroize for $type {
fn zeroize(&mut self) {
volatile_write(self, unsafe { <$type>::new_unchecked(1) });
atomic_fence();
}
}
)+
};
}
impl_zeroize_for_non_zero!(
NonZeroI8,
NonZeroI16,
NonZeroI32,
NonZeroI64,
NonZeroI128,
NonZeroIsize,
NonZeroU8,
NonZeroU16,
NonZeroU32,
NonZeroU64,
NonZeroU128,
NonZeroUsize
);
impl<Z> Zeroize for num::Wrapping<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.0.zeroize();
}
}
/// Impl [`Zeroize`] on arrays of types that impl [`Zeroize`].
impl<Z, const N: usize> Zeroize for [Z; N]
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.iter_mut().zeroize();
}
}
/// Impl [`ZeroizeOnDrop`] on arrays of types that impl [`ZeroizeOnDrop`].
impl<Z, const N: usize> ZeroizeOnDrop for [Z; N] where Z: ZeroizeOnDrop {}
impl<'a, Z> Zeroize for IterMut<'a, Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
for elem in self {
elem.zeroize();
}
}
}
impl<Z> Zeroize for Option<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
if let Some(value) = self {
value.zeroize();
// Ensures self is None and that the value was dropped. Without the take, the drop
// of the (zeroized) value isn't called, which might lead to a leak or other
// unexpected behavior. For example, if this were Option<Vec<T>>, the above call to
// zeroize would not free the allocated memory, but the the `take` call will.
self.take();
}
// Ensure that if the `Option` were previously `Some` but a value was copied/moved out
// that the remaining space in the `Option` is zeroized.
//
// Safety:
//
// The memory pointed to by `self` is valid for `mem::size_of::<Self>()` bytes.
// It is also properly aligned, because `u8` has an alignment of `1`.
unsafe {
volatile_set(self as *mut _ as *mut u8, 0, mem::size_of::<Self>());
}
// Ensures self is overwritten with the default bit pattern. volatile_write can't be
// used because Option<Z> is not copy.
//
// Safety:
//
// self is safe to replace with the default, which the take() call above should have
// already done semantically. Any value which needed to be dropped will have been
// done so by take().
unsafe { ptr::write_volatile(self, Option::default()) }
atomic_fence();
}
}
impl<Z> ZeroizeOnDrop for Option<Z> where Z: ZeroizeOnDrop {}
/// Impl [`Zeroize`] on slices of [`MaybeUninit`] types.
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`].
///
/// This fills the slice with zeroes.
///
/// Note that this ignore invariants that `Z` might have, because
/// [`MaybeUninit`] removes all invariants.
impl<Z> Zeroize for [MaybeUninit<Z>] {
fn zeroize(&mut self) {
let ptr = self.as_mut_ptr() as *mut MaybeUninit<u8>;
let size = self.len().checked_mul(mem::size_of::<Z>()).unwrap();
assert!(size <= isize::MAX as usize);
// Safety:
//
// This is safe, because every valid pointer is well aligned for u8
// and it is backed by a single allocated object for at least `self.len() * size_pf::<Z>()` bytes.
// and 0 is a valid value for `MaybeUninit<Z>`
// The memory of the slice should not wrap around the address space.
unsafe { volatile_set(ptr, MaybeUninit::new(0), size) }
atomic_fence();
}
}
/// Impl [`Zeroize`] on slices of types that can be zeroized with [`Default`].
///
/// This impl can eventually be optimized using an memset intrinsic,
/// such as [`core::intrinsics::volatile_set_memory`]. For that reason the
/// blanket impl on slices is bounded by [`DefaultIsZeroes`].
///
/// To zeroize a mut slice of `Z: Zeroize` which does not impl
/// [`DefaultIsZeroes`], call `iter_mut().zeroize()`.
impl<Z> Zeroize for [Z]
where
Z: DefaultIsZeroes,
{
fn zeroize(&mut self) {
assert!(self.len() <= isize::MAX as usize);
// Safety:
//
// This is safe, because the slice is well aligned and is backed by a single allocated
// object for at least `self.len()` elements of type `Z`.
// `self.len()` is also not larger than an `isize`, because of the assertion above.
// The memory of the slice should not wrap around the address space.
unsafe { volatile_set(self.as_mut_ptr(), Z::default(), self.len()) };
atomic_fence();
}
}
impl Zeroize for str {
fn zeroize(&mut self) {
// Safety:
// A zeroized byte slice is a valid UTF-8 string.
unsafe { self.as_bytes_mut().zeroize() }
}
}
/// [`PhantomData`] is always zero sized so provide a [`Zeroize`] implementation.
impl<Z> Zeroize for PhantomData<Z> {
fn zeroize(&mut self) {}
}
/// [`PhantomData` is always zero sized so provide a ZeroizeOnDrop implementation.
impl<Z> ZeroizeOnDrop for PhantomData<Z> {}
/// `PhantomPinned` is zero sized so provide a Zeroize implementation.
impl Zeroize for PhantomPinned {
fn zeroize(&mut self) {}
}
/// `PhantomPinned` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for PhantomPinned {}
/// `()` is zero sized so provide a Zeroize implementation.
impl Zeroize for () {
fn zeroize(&mut self) {}
}
/// `()` is zero sized so provide a ZeroizeOnDrop implementation.
impl ZeroizeOnDrop for () {}
/// Generic implementation of Zeroize for tuples up to 10 parameters.
impl<A: Zeroize> Zeroize for (A,) {
fn zeroize(&mut self) {
self.0.zeroize();
}
}
/// Generic implementation of ZeroizeOnDrop for tuples up to 10 parameters.
impl<A: ZeroizeOnDrop> ZeroizeOnDrop for (A,) {}
macro_rules! impl_zeroize_tuple {
( $( $type_name:ident ),+ ) => {
impl<$($type_name: Zeroize),+> Zeroize for ($($type_name),+) {
fn zeroize(&mut self) {
#[allow(non_snake_case)]
let ($($type_name),+) = self;
$($type_name.zeroize());+
}
}
impl<$($type_name: ZeroizeOnDrop),+> ZeroizeOnDrop for ($($type_name),+) { }
}
}
// Generic implementations for tuples up to 10 parameters.
impl_zeroize_tuple!(A, B);
impl_zeroize_tuple!(A, B, C);
impl_zeroize_tuple!(A, B, C, D);
impl_zeroize_tuple!(A, B, C, D, E);
impl_zeroize_tuple!(A, B, C, D, E, F);
impl_zeroize_tuple!(A, B, C, D, E, F, G);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I);
impl_zeroize_tuple!(A, B, C, D, E, F, G, H, I, J);
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<Z> Zeroize for Vec<Z>
where
Z: Zeroize,
{
/// "Best effort" zeroization for `Vec`.
///
/// Ensures the entire capacity of the `Vec` is zeroed. Cannot ensure that
/// previous reallocations did not leave values on the heap.
fn zeroize(&mut self) {
// Zeroize all the initialized elements.
self.iter_mut().zeroize();
// Set the Vec's length to 0 and drop all the elements.
self.clear();
// Zero the full capacity of `Vec`.
// Safety:
//
// This is safe, because `Vec` never allocates more than `isize::MAX` bytes.
// This exact use case is even mentioned in the documentation of `pointer::add`.
// This is safe because MaybeUninit ignores all invariants,
// so we can create a slice of MaybeUninit<Z> using the full capacity of the Vec
let uninit_slice = unsafe {
slice::from_raw_parts_mut(self.as_mut_ptr() as *mut MaybeUninit<Z>, self.capacity())
};
uninit_slice.zeroize();
}
}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<Z> ZeroizeOnDrop for Vec<Z> where Z: ZeroizeOnDrop {}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<Z> Zeroize for Box<[Z]>
where
Z: Zeroize,
{
/// Unlike `Vec`, `Box<[Z]>` cannot reallocate, so we can be sure that we are not leaving
/// values on the heap.
fn zeroize(&mut self) {
self.iter_mut().zeroize();
}
}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl<Z> ZeroizeOnDrop for Box<[Z]> where Z: ZeroizeOnDrop {}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl Zeroize for Box<str> {
fn zeroize(&mut self) {
self.as_mut().zeroize();
}
}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
impl Zeroize for String {
fn zeroize(&mut self) {
unsafe { self.as_mut_vec() }.zeroize();
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl Zeroize for CString {
fn zeroize(&mut self) {
// mem::take uses replace internally to swap the pointer
// Unfortunately this results in an allocation for a Box::new(&[0]) as CString must
// contain a trailing zero byte
let this = mem::take(self);
// - CString::into_bytes calls ::into_vec which takes ownership of the heap pointer
// as a Vec<u8>
// - Calling .zeroize() on the resulting vector clears out the bytes
// From: https://github.com/RustCrypto/utils/pull/759#issuecomment-1087976570
let mut buf = this.into_bytes();
buf.zeroize();
// expect() should never fail, because zeroize() truncates the Vec
let zeroed = CString::new(buf).expect("buf not truncated");
// Replace self by the zeroed CString to maintain the original ptr of the buffer
let _ = mem::replace(self, zeroed);
}
}
/// `Zeroizing` is a a wrapper for any `Z: Zeroize` type which implements a
/// `Drop` handler which zeroizes dropped values.
#[derive(Debug, Default, Eq, PartialEq)]
pub struct Zeroizing<Z: Zeroize>(Z);
impl<Z> Zeroizing<Z>
where
Z: Zeroize,
{
/// Move value inside a `Zeroizing` wrapper which ensures it will be
/// zeroized when it's dropped.
#[inline(always)]
pub fn new(value: Z) -> Self {
Self(value)
}
}
impl<Z: Zeroize + Clone> Clone for Zeroizing<Z> {
#[inline(always)]
fn clone(&self) -> Self {
Self(self.0.clone())
}
#[inline(always)]
fn clone_from(&mut self, source: &Self) {
self.0.zeroize();
self.0.clone_from(&source.0);
}
}
impl<Z> From<Z> for Zeroizing<Z>
where
Z: Zeroize,
{
#[inline(always)]
fn from(value: Z) -> Zeroizing<Z> {
Zeroizing(value)
}
}
impl<Z> ops::Deref for Zeroizing<Z>
where
Z: Zeroize,
{
type Target = Z;
#[inline(always)]
fn deref(&self) -> &Z {
&self.0
}
}
impl<Z> ops::DerefMut for Zeroizing<Z>
where
Z: Zeroize,
{
#[inline(always)]
fn deref_mut(&mut self) -> &mut Z {
&mut self.0
}
}
impl<T, Z> AsRef<T> for Zeroizing<Z>
where
T: ?Sized,
Z: AsRef<T> + Zeroize,
{
#[inline(always)]
fn as_ref(&self) -> &T {
self.0.as_ref()
}
}
impl<T, Z> AsMut<T> for Zeroizing<Z>
where
T: ?Sized,
Z: AsMut<T> + Zeroize,
{
#[inline(always)]
fn as_mut(&mut self) -> &mut T {
self.0.as_mut()
}
}
impl<Z> Zeroize for Zeroizing<Z>
where
Z: Zeroize,
{
fn zeroize(&mut self) {
self.0.zeroize();
}
}
impl<Z> ZeroizeOnDrop for Zeroizing<Z> where Z: Zeroize {}
impl<Z> Drop for Zeroizing<Z>
where
Z: Zeroize,
{
fn drop(&mut self) {
self.0.zeroize()
}
}
#[cfg(feature = "serde")]
impl<Z> serde::Serialize for Zeroizing<Z>
where
Z: Zeroize + serde::Serialize,
{
#[inline(always)]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.0.serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl<'de, Z> serde::Deserialize<'de> for Zeroizing<Z>
where
Z: Zeroize + serde::Deserialize<'de>,
{
#[inline(always)]
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
Ok(Self(Z::deserialize(deserializer)?))
}
}
/// Use fences to prevent accesses from being reordered before this
/// point, which should hopefully help ensure that all accessors
/// see zeroes after this point.
#[inline(always)]
fn atomic_fence() {
atomic::compiler_fence(atomic::Ordering::SeqCst);
}
/// Perform a volatile write to the destination
#[inline(always)]
fn volatile_write<T: Copy + Sized>(dst: &mut T, src: T) {
unsafe { ptr::write_volatile(dst, src) }
}
/// Perform a volatile `memset` operation which fills a slice with a value
///
/// Safety:
/// The memory pointed to by `dst` must be a single allocated object that is valid for `count`
/// contiguous elements of `T`.
/// `count` must not be larger than an `isize`.
/// `dst` being offset by `mem::size_of::<T> * count` bytes must not wrap around the address space.
/// Also `dst` must be properly aligned.
#[inline(always)]
unsafe fn volatile_set<T: Copy + Sized>(dst: *mut T, src: T, count: usize) {
// TODO(tarcieri): use `volatile_set_memory` when stabilized
for i in 0..count {
// Safety:
//
// This is safe because there is room for at least `count` objects of type `T` in the
// allocation pointed to by `dst`, because `count <= isize::MAX` and because
// `dst.add(count)` must not wrap around the address space.
let ptr = dst.add(i);
// Safety:
//
// This is safe, because the pointer is valid and because `dst` is well aligned for `T` and
// `ptr` is an offset of `dst` by a multiple of `mem::size_of::<T>()` bytes.
ptr::write_volatile(ptr, src);
}
}
/// Internal module used as support for `AssertZeroizeOnDrop`.
#[doc(hidden)]
pub mod __internal {
use super::*;
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
pub trait AssertZeroizeOnDrop {
fn zeroize_or_on_drop(self);
}
impl<T: ZeroizeOnDrop + ?Sized> AssertZeroizeOnDrop for &&mut T {
fn zeroize_or_on_drop(self) {}
}
/// Auto-deref workaround for deriving `ZeroizeOnDrop`.
pub trait AssertZeroize {
fn zeroize_or_on_drop(&mut self);
}
impl<T: Zeroize + ?Sized> AssertZeroize for T {
fn zeroize_or_on_drop(&mut self) {
self.zeroize()
}
}
}