1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
// Not supported by MSRV
#![allow(clippy::uninlined_format_args)]

extern crate proc_macro;

use proc_macro::TokenStream;
use proc_macro2::Span;
use quote::{format_ident, quote, ToTokens};
use std::collections::BTreeSet;
use syn::{
    parse::{Parse, ParseStream},
    parse_macro_input, parse_quote, Attribute, Data, DeriveInput, Error, Expr, ExprLit, ExprUnary,
    Fields, Ident, Lit, LitInt, Meta, Result, UnOp,
};

macro_rules! die {
    ($spanned:expr=>
        $msg:expr
    ) => {
        return Err(Error::new_spanned($spanned, $msg))
    };

    (
        $msg:expr
    ) => {
        return Err(Error::new(Span::call_site(), $msg))
    };
}

fn literal(i: i128) -> Expr {
    Expr::Lit(ExprLit {
        lit: Lit::Int(LitInt::new(&i.to_string(), Span::call_site())),
        attrs: vec![],
    })
}

enum DiscriminantValue {
    Literal(i128),
    Expr(Expr),
}

fn parse_discriminant(val_exp: &Expr) -> Result<DiscriminantValue> {
    let mut sign = 1;
    let mut unsigned_expr = val_exp;
    if let Expr::Unary(ExprUnary {
        op: UnOp::Neg(..),
        expr,
        ..
    }) = val_exp
    {
        unsigned_expr = expr;
        sign = -1;
    }
    if let Expr::Lit(ExprLit {
        lit: Lit::Int(ref lit_int),
        ..
    }) = unsigned_expr
    {
        Ok(DiscriminantValue::Literal(
            sign * lit_int.base10_parse::<i128>()?,
        ))
    } else {
        Ok(DiscriminantValue::Expr(val_exp.clone()))
    }
}

#[cfg(feature = "complex-expressions")]
fn parse_alternative_values(val_expr: &Expr) -> Result<Vec<DiscriminantValue>> {
    fn range_expr_value_to_number(
        parent_range_expr: &Expr,
        range_bound_value: &Option<Box<Expr>>,
    ) -> Result<i128> {
        // Avoid needing to calculate what the lower and upper bound would be - these are type dependent,
        // and also may not be obvious in context (e.g. an omitted bound could reasonably mean "from the last discriminant" or "from the lower bound of the type").
        if let Some(range_bound_value) = range_bound_value {
            let range_bound_value = parse_discriminant(range_bound_value.as_ref())?;
            // If non-literals are used, we can't expand to the mapped values, so can't write a nice match statement or do exhaustiveness checking.
            // Require literals instead.
            if let DiscriminantValue::Literal(value) = range_bound_value {
                return Ok(value);
            }
        }
        die!(parent_range_expr => "When ranges are used for alternate values, both bounds most be explicitly specified numeric literals")
    }

    if let Expr::Range(syn::ExprRange {
        start, end, limits, ..
    }) = val_expr
    {
        let lower = range_expr_value_to_number(val_expr, start)?;
        let upper = range_expr_value_to_number(val_expr, end)?;
        // While this is technically allowed in Rust, and results in an empty range, it's almost certainly a mistake in this context.
        if lower > upper {
            die!(val_expr => "When using ranges for alternate values, upper bound must not be less than lower bound");
        }
        let mut values = Vec::with_capacity((upper - lower) as usize);
        let mut next = lower;
        loop {
            match limits {
                syn::RangeLimits::HalfOpen(..) => {
                    if next == upper {
                        break;
                    }
                }
                syn::RangeLimits::Closed(..) => {
                    if next > upper {
                        break;
                    }
                }
            }
            values.push(DiscriminantValue::Literal(next));
            next += 1;
        }
        return Ok(values);
    }
    parse_discriminant(val_expr).map(|v| vec![v])
}

#[cfg(not(feature = "complex-expressions"))]
fn parse_alternative_values(val_expr: &Expr) -> Result<Vec<DiscriminantValue>> {
    parse_discriminant(val_expr).map(|v| vec![v])
}

mod kw {
    syn::custom_keyword!(default);
    syn::custom_keyword!(catch_all);
    syn::custom_keyword!(alternatives);
}

struct NumEnumVariantAttributes {
    items: syn::punctuated::Punctuated<NumEnumVariantAttributeItem, syn::Token![,]>,
}

impl Parse for NumEnumVariantAttributes {
    fn parse(input: ParseStream<'_>) -> Result<Self> {
        Ok(Self {
            items: input.parse_terminated(NumEnumVariantAttributeItem::parse, syn::Token![,])?,
        })
    }
}

enum NumEnumVariantAttributeItem {
    Default(VariantDefaultAttribute),
    CatchAll(VariantCatchAllAttribute),
    Alternatives(VariantAlternativesAttribute),
}

impl Parse for NumEnumVariantAttributeItem {
    fn parse(input: ParseStream<'_>) -> Result<Self> {
        let lookahead = input.lookahead1();
        if lookahead.peek(kw::default) {
            input.parse().map(Self::Default)
        } else if lookahead.peek(kw::catch_all) {
            input.parse().map(Self::CatchAll)
        } else if lookahead.peek(kw::alternatives) {
            input.parse().map(Self::Alternatives)
        } else {
            Err(lookahead.error())
        }
    }
}

struct VariantDefaultAttribute {
    keyword: kw::default,
}

impl Parse for VariantDefaultAttribute {
    fn parse(input: ParseStream) -> Result<Self> {
        Ok(Self {
            keyword: input.parse()?,
        })
    }
}

struct VariantCatchAllAttribute {
    keyword: kw::catch_all,
}

impl Parse for VariantCatchAllAttribute {
    fn parse(input: ParseStream) -> Result<Self> {
        Ok(Self {
            keyword: input.parse()?,
        })
    }
}

struct VariantAlternativesAttribute {
    _keyword: kw::alternatives,
    _eq_token: syn::Token![=],
    _bracket_token: syn::token::Bracket,
    expressions: syn::punctuated::Punctuated<Expr, syn::Token![,]>,
}

impl Parse for VariantAlternativesAttribute {
    fn parse(input: ParseStream) -> Result<Self> {
        let content;
        let keyword = input.parse()?;
        let _eq_token = input.parse()?;
        let _bracket_token = syn::bracketed!(content in input);
        let expressions = content.parse_terminated(Expr::parse, syn::Token![,])?;
        Ok(Self {
            _keyword: keyword,
            _eq_token,
            _bracket_token,
            expressions,
        })
    }
}

struct VariantInfo {
    ident: Ident,
    is_default: bool,
    is_catch_all: bool,
    canonical_value: Expr,
    alternative_values: Vec<Expr>,
}

impl VariantInfo {
    fn all_values(&self) -> impl Iterator<Item = &Expr> {
        ::core::iter::once(&self.canonical_value).chain(self.alternative_values.iter())
    }
}

struct EnumInfo {
    name: Ident,
    repr: Ident,
    variants: Vec<VariantInfo>,
}

impl EnumInfo {
    /// Returns whether the number of variants (ignoring defaults, catch-alls, etc) is the same as
    /// the capacity of the repr.
    fn is_naturally_exhaustive(&self) -> Result<bool> {
        let repr_str = self.repr.to_string();
        if !repr_str.is_empty() {
            let suffix = repr_str
                .strip_prefix('i')
                .or_else(|| repr_str.strip_prefix('u'));
            if let Some(suffix) = suffix {
                if suffix == "size" {
                    return Ok(false);
                } else if let Ok(bits) = suffix.parse::<u32>() {
                    let variants = 1usize.checked_shl(bits);
                    return Ok(variants.map_or(false, |v| {
                        v == self
                            .variants
                            .iter()
                            .map(|v| v.alternative_values.len() + 1)
                            .sum()
                    }));
                }
            }
        }
        die!(self.repr.clone() => "Failed to parse repr into bit size");
    }

    fn default(&self) -> Option<&Ident> {
        self.variants
            .iter()
            .find(|info| info.is_default)
            .map(|info| &info.ident)
    }

    fn catch_all(&self) -> Option<&Ident> {
        self.variants
            .iter()
            .find(|info| info.is_catch_all)
            .map(|info| &info.ident)
    }

    fn variant_idents(&self) -> Vec<Ident> {
        self.variants
            .iter()
            .map(|variant| variant.ident.clone())
            .collect()
    }

    fn expression_idents(&self) -> Vec<Vec<Ident>> {
        self.variants
            .iter()
            .filter(|variant| !variant.is_catch_all)
            .map(|info| {
                let indices = 0..(info.alternative_values.len() + 1);
                indices
                    .map(|index| format_ident!("{}__num_enum_{}__", info.ident, index))
                    .collect()
            })
            .collect()
    }

    fn variant_expressions(&self) -> Vec<Vec<Expr>> {
        self.variants
            .iter()
            .map(|variant| variant.all_values().cloned().collect())
            .collect()
    }
}

impl Parse for EnumInfo {
    fn parse(input: ParseStream) -> Result<Self> {
        Ok({
            let input: DeriveInput = input.parse()?;
            let name = input.ident;
            let data = match input.data {
                Data::Enum(data) => data,
                Data::Union(data) => die!(data.union_token => "Expected enum but found union"),
                Data::Struct(data) => die!(data.struct_token => "Expected enum but found struct"),
            };

            let repr: Ident = {
                let mut attrs = input.attrs.into_iter();
                loop {
                    if let Some(attr) = attrs.next() {
                        if let Meta::List(meta_list) = &attr.meta {
                            if let Some(ident) = meta_list.path.get_ident() {
                                if ident == "repr" {
                                    let mut nested = meta_list.tokens.clone().into_iter();
                                    let repr = match (nested.next(), nested.next()) {
                                        (Some(repr), None) => repr,
                                        _ => die!(attr =>
                                            "Expected exactly one `repr` argument"
                                        ),
                                    };
                                    let repr: Ident = parse_quote! {
                                        #repr
                                    };
                                    if repr == "C" {
                                        die!(repr =>
                                            "repr(C) doesn't have a well defined size"
                                        );
                                    } else {
                                        break repr;
                                    }
                                }
                            }
                        }
                    } else {
                        die!("Missing `#[repr({Integer})]` attribute");
                    }
                }
            };

            let mut variants: Vec<VariantInfo> = vec![];
            let mut has_default_variant: bool = false;
            let mut has_catch_all_variant: bool = false;

            // Vec to keep track of the used discriminants and alt values.
            let mut discriminant_int_val_set = BTreeSet::new();

            let mut next_discriminant = literal(0);
            for variant in data.variants.into_iter() {
                let ident = variant.ident.clone();

                let discriminant = match &variant.discriminant {
                    Some(d) => d.1.clone(),
                    None => next_discriminant.clone(),
                };

                let mut raw_alternative_values: Vec<Expr> = vec![];
                // Keep the attribute around for better error reporting.
                let mut alt_attr_ref: Vec<&Attribute> = vec![];

                // `#[num_enum(default)]` is required by `#[derive(FromPrimitive)]`
                // and forbidden by `#[derive(UnsafeFromPrimitive)]`, so we need to
                // keep track of whether we encountered such an attribute:
                let mut is_default: bool = false;
                let mut is_catch_all: bool = false;

                for attribute in &variant.attrs {
                    if attribute.path().is_ident("default") {
                        if has_default_variant {
                            die!(attribute =>
                                "Multiple variants marked `#[default]` or `#[num_enum(default)]` found"
                            );
                        } else if has_catch_all_variant {
                            die!(attribute =>
                                "Attribute `default` is mutually exclusive with `catch_all`"
                            );
                        }
                        is_default = true;
                        has_default_variant = true;
                    }

                    if attribute.path().is_ident("num_enum") {
                        match attribute.parse_args_with(NumEnumVariantAttributes::parse) {
                            Ok(variant_attributes) => {
                                for variant_attribute in variant_attributes.items {
                                    match variant_attribute {
                                        NumEnumVariantAttributeItem::Default(default) => {
                                            if has_default_variant {
                                                die!(default.keyword =>
                                                    "Multiple variants marked `#[default]` or `#[num_enum(default)]` found"
                                                );
                                            } else if has_catch_all_variant {
                                                die!(default.keyword =>
                                                    "Attribute `default` is mutually exclusive with `catch_all`"
                                                );
                                            }
                                            is_default = true;
                                            has_default_variant = true;
                                        }
                                        NumEnumVariantAttributeItem::CatchAll(catch_all) => {
                                            if has_catch_all_variant {
                                                die!(catch_all.keyword =>
                                                    "Multiple variants marked with `#[num_enum(catch_all)]`"
                                                );
                                            } else if has_default_variant {
                                                die!(catch_all.keyword =>
                                                    "Attribute `catch_all` is mutually exclusive with `default`"
                                                );
                                            }

                                            match variant
                                                .fields
                                                .iter()
                                                .collect::<Vec<_>>()
                                                .as_slice()
                                            {
                                                [syn::Field {
                                                    ty: syn::Type::Path(syn::TypePath { path, .. }),
                                                    ..
                                                }] if path.is_ident(&repr) => {
                                                    is_catch_all = true;
                                                    has_catch_all_variant = true;
                                                }
                                                _ => {
                                                    die!(catch_all.keyword =>
                                                        "Variant with `catch_all` must be a tuple with exactly 1 field matching the repr type"
                                                    );
                                                }
                                            }
                                        }
                                        NumEnumVariantAttributeItem::Alternatives(alternatives) => {
                                            raw_alternative_values.extend(alternatives.expressions);
                                            alt_attr_ref.push(attribute);
                                        }
                                    }
                                }
                            }
                            Err(err) => {
                                if cfg!(not(feature = "complex-expressions")) {
                                    let tokens = attribute.meta.to_token_stream();

                                    let attribute_str = format!("{}", tokens);
                                    if attribute_str.contains("alternatives")
                                        && attribute_str.contains("..")
                                    {
                                        // Give a nice error message suggesting how to fix the problem.
                                        die!(attribute => "Ranges are only supported as num_enum alternate values if the `complex-expressions` feature of the crate `num_enum` is enabled".to_string())
                                    }
                                }
                                die!(attribute =>
                                    format!("Invalid attribute: {}", err)
                                );
                            }
                        }
                    }
                }

                if !is_catch_all {
                    match &variant.fields {
                        Fields::Named(_) | Fields::Unnamed(_) => {
                            die!(variant => format!("`{}` only supports unit variants (with no associated data), but `{}::{}` was not a unit variant.", get_crate_name(), name, ident));
                        }
                        Fields::Unit => {}
                    }
                }

                let discriminant_value = parse_discriminant(&discriminant)?;

                // Check for collision.
                // We can't do const evaluation, or even compare arbitrary Exprs,
                // so unfortunately we can't check for duplicates.
                // That's not the end of the world, just we'll end up with compile errors for
                // matches with duplicate branches in generated code instead of nice friendly error messages.
                if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
                    if discriminant_int_val_set.contains(&canonical_value_int) {
                        die!(ident => format!("The discriminant '{}' collides with a value attributed to a previous variant", canonical_value_int))
                    }
                }

                // Deal with the alternative values.
                let mut flattened_alternative_values = Vec::new();
                let mut flattened_raw_alternative_values = Vec::new();
                for raw_alternative_value in raw_alternative_values {
                    let expanded_values = parse_alternative_values(&raw_alternative_value)?;
                    for expanded_value in expanded_values {
                        flattened_alternative_values.push(expanded_value);
                        flattened_raw_alternative_values.push(raw_alternative_value.clone())
                    }
                }

                if !flattened_alternative_values.is_empty() {
                    let alternate_int_values = flattened_alternative_values
                        .into_iter()
                        .map(|v| {
                            match v {
                                DiscriminantValue::Literal(value) => Ok(value),
                                DiscriminantValue::Expr(expr) => {
                                    if let Expr::Range(_) = expr {
                                        if cfg!(not(feature = "complex-expressions")) {
                                            // Give a nice error message suggesting how to fix the problem.
                                            die!(expr => "Ranges are only supported as num_enum alternate values if the `complex-expressions` feature of the crate `num_enum` is enabled".to_string())
                                        }
                                    }
                                    // We can't do uniqueness checking on non-literals, so we don't allow them as alternate values.
                                    // We could probably allow them, but there doesn't seem to be much of a use-case,
                                    // and it's easier to give good error messages about duplicate values this way,
                                    // rather than rustc errors on conflicting match branches.
                                    die!(expr => "Only literals are allowed as num_enum alternate values".to_string())
                                },
                            }
                        })
                        .collect::<Result<Vec<i128>>>()?;
                    let mut sorted_alternate_int_values = alternate_int_values.clone();
                    sorted_alternate_int_values.sort_unstable();
                    let sorted_alternate_int_values = sorted_alternate_int_values;

                    // Check if the current discriminant is not in the alternative values.
                    if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
                        if let Some(index) = alternate_int_values
                            .iter()
                            .position(|&x| x == canonical_value_int)
                        {
                            die!(&flattened_raw_alternative_values[index] => format!("'{}' in the alternative values is already attributed as the discriminant of this variant", canonical_value_int));
                        }
                    }

                    // Search for duplicates, the vec is sorted. Warn about them.
                    if (1..sorted_alternate_int_values.len()).any(|i| {
                        sorted_alternate_int_values[i] == sorted_alternate_int_values[i - 1]
                    }) {
                        let attr = *alt_attr_ref.last().unwrap();
                        die!(attr => "There is duplication in the alternative values");
                    }
                    // Search if those discriminant_int_val_set where already attributed.
                    // (discriminant_int_val_set is BTreeSet, and iter().next_back() is the is the maximum in the set.)
                    if let Some(last_upper_val) = discriminant_int_val_set.iter().next_back() {
                        if sorted_alternate_int_values.first().unwrap() <= last_upper_val {
                            for (index, val) in alternate_int_values.iter().enumerate() {
                                if discriminant_int_val_set.contains(val) {
                                    die!(&flattened_raw_alternative_values[index] => format!("'{}' in the alternative values is already attributed to a previous variant", val));
                                }
                            }
                        }
                    }

                    // Reconstruct the alternative_values vec of Expr but sorted.
                    flattened_raw_alternative_values = sorted_alternate_int_values
                        .iter()
                        .map(|val| literal(val.to_owned()))
                        .collect();

                    // Add the alternative values to the the set to keep track.
                    discriminant_int_val_set.extend(sorted_alternate_int_values);
                }

                // Add the current discriminant to the the set to keep track.
                if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
                    discriminant_int_val_set.insert(canonical_value_int);
                }

                variants.push(VariantInfo {
                    ident,
                    is_default,
                    is_catch_all,
                    canonical_value: discriminant,
                    alternative_values: flattened_raw_alternative_values,
                });

                // Get the next value for the discriminant.
                next_discriminant = match discriminant_value {
                    DiscriminantValue::Literal(int_value) => literal(int_value.wrapping_add(1)),
                    DiscriminantValue::Expr(expr) => {
                        parse_quote! {
                            #repr::wrapping_add(#expr, 1)
                        }
                    }
                }
            }

            EnumInfo {
                name,
                repr,
                variants,
            }
        })
    }
}

/// Implements `Into<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// (It actually implements `From<Enum> for Primitive`)
///
/// ## Allows turning an enum into a primitive.
///
/// ```rust
/// use num_enum::IntoPrimitive;
///
/// #[derive(IntoPrimitive)]
/// #[repr(u8)]
/// enum Number {
///     Zero,
///     One,
/// }
///
/// let zero: u8 = Number::Zero.into();
/// assert_eq!(zero, 0u8);
/// ```
#[proc_macro_derive(IntoPrimitive, attributes(num_enum, catch_all))]
pub fn derive_into_primitive(input: TokenStream) -> TokenStream {
    let enum_info = parse_macro_input!(input as EnumInfo);
    let catch_all = enum_info.catch_all();
    let name = &enum_info.name;
    let repr = &enum_info.repr;

    let body = if let Some(catch_all_ident) = catch_all {
        quote! {
            match enum_value {
                #name::#catch_all_ident(raw) => raw,
                rest => unsafe { *(&rest as *const #name as *const Self) }
            }
        }
    } else {
        quote! { enum_value as Self }
    };

    TokenStream::from(quote! {
        impl From<#name> for #repr {
            #[inline]
            fn from (enum_value: #name) -> Self
            {
                #body
            }
        }
    })
}

/// Implements `From<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// Turning a primitive into an enum with `from`.
/// ----------------------------------------------
///
/// ```rust
/// use num_enum::FromPrimitive;
///
/// #[derive(Debug, Eq, PartialEq, FromPrimitive)]
/// #[repr(u8)]
/// enum Number {
///     Zero,
///     #[num_enum(default)]
///     NonZero,
/// }
///
/// let zero = Number::from(0u8);
/// assert_eq!(zero, Number::Zero);
///
/// let one = Number::from(1u8);
/// assert_eq!(one, Number::NonZero);
///
/// let two = Number::from(2u8);
/// assert_eq!(two, Number::NonZero);
/// ```
#[proc_macro_derive(FromPrimitive, attributes(num_enum, default, catch_all))]
pub fn derive_from_primitive(input: TokenStream) -> TokenStream {
    let enum_info: EnumInfo = parse_macro_input!(input);
    let krate = Ident::new(&get_crate_name(), Span::call_site());

    let is_naturally_exhaustive = enum_info.is_naturally_exhaustive();
    let catch_all_body = match is_naturally_exhaustive {
        Ok(is_naturally_exhaustive) => {
            if is_naturally_exhaustive {
                quote! { unreachable!("exhaustive enum") }
            } else if let Some(default_ident) = enum_info.default() {
                quote! { Self::#default_ident }
            } else if let Some(catch_all_ident) = enum_info.catch_all() {
                quote! { Self::#catch_all_ident(number) }
            } else {
                let span = Span::call_site();
                let message =
                    "#[derive(num_enum::FromPrimitive)] requires enum to be exhaustive, or a variant marked with `#[default]`, `#[num_enum(default)]`, or `#[num_enum(catch_all)`";
                return syn::Error::new(span, message).to_compile_error().into();
            }
        }
        Err(err) => {
            return err.to_compile_error().into();
        }
    };

    let EnumInfo {
        ref name, ref repr, ..
    } = enum_info;

    let variant_idents: Vec<Ident> = enum_info.variant_idents();
    let expression_idents: Vec<Vec<Ident>> = enum_info.expression_idents();
    let variant_expressions: Vec<Vec<Expr>> = enum_info.variant_expressions();

    debug_assert_eq!(variant_idents.len(), variant_expressions.len());

    TokenStream::from(quote! {
        impl ::#krate::FromPrimitive for #name {
            type Primitive = #repr;

            fn from_primitive(number: Self::Primitive) -> Self {
                // Use intermediate const(s) so that enums defined like
                // `Two = ONE + 1u8` work properly.
                #![allow(non_upper_case_globals)]
                #(
                    #(
                        const #expression_idents: #repr = #variant_expressions;
                    )*
                )*
                #[deny(unreachable_patterns)]
                match number {
                    #(
                        #( #expression_idents )|*
                        => Self::#variant_idents,
                    )*
                    #[allow(unreachable_patterns)]
                    _ => #catch_all_body,
                }
            }
        }

        impl ::core::convert::From<#repr> for #name {
            #[inline]
            fn from (
                number: #repr,
            ) -> Self {
                ::#krate::FromPrimitive::from_primitive(number)
            }
        }

        #[doc(hidden)]
        impl ::#krate::CannotDeriveBothFromPrimitiveAndTryFromPrimitive for #name {}
    })
}

/// Implements `TryFrom<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// Attempting to turn a primitive into an enum with `try_from`.
/// ----------------------------------------------
///
/// ```rust
/// use num_enum::TryFromPrimitive;
/// use std::convert::TryFrom;
///
/// #[derive(Debug, Eq, PartialEq, TryFromPrimitive)]
/// #[repr(u8)]
/// enum Number {
///     Zero,
///     One,
/// }
///
/// let zero = Number::try_from(0u8);
/// assert_eq!(zero, Ok(Number::Zero));
///
/// let three = Number::try_from(3u8);
/// assert_eq!(
///     three.unwrap_err().to_string(),
///     "No discriminant in enum `Number` matches the value `3`",
/// );
/// ```
#[proc_macro_derive(TryFromPrimitive, attributes(num_enum))]
pub fn derive_try_from_primitive(input: TokenStream) -> TokenStream {
    let enum_info: EnumInfo = parse_macro_input!(input);
    let krate = Ident::new(&get_crate_name(), Span::call_site());

    let EnumInfo {
        ref name, ref repr, ..
    } = enum_info;

    let variant_idents: Vec<Ident> = enum_info.variant_idents();
    let expression_idents: Vec<Vec<Ident>> = enum_info.expression_idents();
    let variant_expressions: Vec<Vec<Expr>> = enum_info.variant_expressions();

    debug_assert_eq!(variant_idents.len(), variant_expressions.len());

    TokenStream::from(quote! {
        impl ::#krate::TryFromPrimitive for #name {
            type Primitive = #repr;

            const NAME: &'static str = stringify!(#name);

            fn try_from_primitive (
                number: Self::Primitive,
            ) -> ::core::result::Result<
                Self,
                ::#krate::TryFromPrimitiveError<Self>
            > {
                // Use intermediate const(s) so that enums defined like
                // `Two = ONE + 1u8` work properly.
                #![allow(non_upper_case_globals)]
                #(
                    #(
                        const #expression_idents: #repr = #variant_expressions;
                    )*
                )*
                #[deny(unreachable_patterns)]
                match number {
                    #(
                        #( #expression_idents )|*
                        => ::core::result::Result::Ok(Self::#variant_idents),
                    )*
                    #[allow(unreachable_patterns)]
                    _ => ::core::result::Result::Err(
                        ::#krate::TryFromPrimitiveError { number }
                    ),
                }
            }
        }

        impl ::core::convert::TryFrom<#repr> for #name {
            type Error = ::#krate::TryFromPrimitiveError<Self>;

            #[inline]
            fn try_from (
                number: #repr,
            ) -> ::core::result::Result<Self, ::#krate::TryFromPrimitiveError<Self>>
            {
                ::#krate::TryFromPrimitive::try_from_primitive(number)
            }
        }

        #[doc(hidden)]
        impl ::#krate::CannotDeriveBothFromPrimitiveAndTryFromPrimitive for #name {}
    })
}

#[cfg(feature = "proc-macro-crate")]
fn get_crate_name() -> String {
    let found_crate = proc_macro_crate::crate_name("num_enum").unwrap_or_else(|err| {
        eprintln!("Warning: {}\n    => defaulting to `num_enum`", err,);
        proc_macro_crate::FoundCrate::Itself
    });

    match found_crate {
        proc_macro_crate::FoundCrate::Itself => String::from("num_enum"),
        proc_macro_crate::FoundCrate::Name(name) => name,
    }
}

// Don't depend on proc-macro-crate in no_std environments because it causes an awkward dependency
// on serde with std.
//
// no_std dependees on num_enum cannot rename the num_enum crate when they depend on it. Sorry.
//
// See https://github.com/illicitonion/num_enum/issues/18
#[cfg(not(feature = "proc-macro-crate"))]
fn get_crate_name() -> String {
    String::from("num_enum")
}

/// Generates a `unsafe fn unchecked_transmute_from(number: Primitive) -> Self`
/// associated function.
///
/// Allows unsafely turning a primitive into an enum with unchecked_transmute_from
/// ------------------------------------------------------------------------------
///
/// If you're really certain a conversion will succeed, and want to avoid a small amount of overhead, you can use unsafe
/// code to do this conversion. Unless you have data showing that the match statement generated in the `try_from` above is a
/// bottleneck for you, you should avoid doing this, as the unsafe code has potential to cause serious memory issues in
/// your program.
///
/// Note that this derive ignores any `default`, `catch_all`, and `alternatives` attributes on the enum.
/// If you need support for conversions from these values, you should use `TryFromPrimitive` or `FromPrimitive`.
///
/// ```rust
/// use num_enum::UnsafeFromPrimitive;
///
/// #[derive(Debug, Eq, PartialEq, UnsafeFromPrimitive)]
/// #[repr(u8)]
/// enum Number {
///     Zero,
///     One,
/// }
///
/// fn main() {
///     assert_eq!(
///         Number::Zero,
///         unsafe { Number::unchecked_transmute_from(0_u8) },
///     );
///     assert_eq!(
///         Number::One,
///         unsafe { Number::unchecked_transmute_from(1_u8) },
///     );
/// }
///
/// unsafe fn undefined_behavior() {
///     let _ = Number::unchecked_transmute_from(2); // 2 is not a valid discriminant!
/// }
/// ```
#[proc_macro_derive(UnsafeFromPrimitive, attributes(num_enum))]
pub fn derive_unsafe_from_primitive(stream: TokenStream) -> TokenStream {
    let enum_info = parse_macro_input!(stream as EnumInfo);
    let krate = Ident::new(&get_crate_name(), Span::call_site());

    let EnumInfo {
        ref name, ref repr, ..
    } = enum_info;

    TokenStream::from(quote! {
        impl ::#krate::UnsafeFromPrimitive for #name {
            type Primitive = #repr;

            unsafe fn unchecked_transmute_from(number: Self::Primitive) -> Self {
                ::core::mem::transmute(number)
            }
        }
    })
}

/// Implements `core::default::Default` for a `#[repr(Primitive)] enum`.
///
/// Whichever variant has the `#[default]` or `#[num_enum(default)]` attribute will be returned.
/// ----------------------------------------------
///
/// ```rust
/// #[derive(Debug, Eq, PartialEq, num_enum::Default)]
/// #[repr(u8)]
/// enum Number {
///     Zero,
///     #[default]
///     One,
/// }
///
/// assert_eq!(Number::One, Number::default());
/// assert_eq!(Number::One, <Number as ::core::default::Default>::default());
/// ```
#[proc_macro_derive(Default, attributes(num_enum, default))]
pub fn derive_default(stream: TokenStream) -> TokenStream {
    let enum_info = parse_macro_input!(stream as EnumInfo);

    let default_ident = match enum_info.default() {
        Some(ident) => ident,
        None => {
            let span = Span::call_site();
            let message =
                "#[derive(num_enum::Default)] requires enum to be exhaustive, or a variant marked with `#[default]` or `#[num_enum(default)]`";
            return syn::Error::new(span, message).to_compile_error().into();
        }
    };

    let EnumInfo { ref name, .. } = enum_info;

    TokenStream::from(quote! {
        impl ::core::default::Default for #name {
            #[inline]
            fn default() -> Self {
                Self::#default_ident
            }
        }
    })
}