1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
// Not supported by MSRV
#![allow(clippy::uninlined_format_args)]
extern crate proc_macro;
use proc_macro::TokenStream;
use proc_macro2::Span;
use quote::{format_ident, quote, ToTokens};
use std::collections::BTreeSet;
use syn::{
parse::{Parse, ParseStream},
parse_macro_input, parse_quote, Attribute, Data, DeriveInput, Error, Expr, ExprLit, ExprUnary,
Fields, Ident, Lit, LitInt, Meta, Result, UnOp,
};
macro_rules! die {
($spanned:expr=>
$msg:expr
) => {
return Err(Error::new_spanned($spanned, $msg))
};
(
$msg:expr
) => {
return Err(Error::new(Span::call_site(), $msg))
};
}
fn literal(i: i128) -> Expr {
Expr::Lit(ExprLit {
lit: Lit::Int(LitInt::new(&i.to_string(), Span::call_site())),
attrs: vec![],
})
}
enum DiscriminantValue {
Literal(i128),
Expr(Expr),
}
fn parse_discriminant(val_exp: &Expr) -> Result<DiscriminantValue> {
let mut sign = 1;
let mut unsigned_expr = val_exp;
if let Expr::Unary(ExprUnary {
op: UnOp::Neg(..),
expr,
..
}) = val_exp
{
unsigned_expr = expr;
sign = -1;
}
if let Expr::Lit(ExprLit {
lit: Lit::Int(ref lit_int),
..
}) = unsigned_expr
{
Ok(DiscriminantValue::Literal(
sign * lit_int.base10_parse::<i128>()?,
))
} else {
Ok(DiscriminantValue::Expr(val_exp.clone()))
}
}
#[cfg(feature = "complex-expressions")]
fn parse_alternative_values(val_expr: &Expr) -> Result<Vec<DiscriminantValue>> {
fn range_expr_value_to_number(
parent_range_expr: &Expr,
range_bound_value: &Option<Box<Expr>>,
) -> Result<i128> {
// Avoid needing to calculate what the lower and upper bound would be - these are type dependent,
// and also may not be obvious in context (e.g. an omitted bound could reasonably mean "from the last discriminant" or "from the lower bound of the type").
if let Some(range_bound_value) = range_bound_value {
let range_bound_value = parse_discriminant(range_bound_value.as_ref())?;
// If non-literals are used, we can't expand to the mapped values, so can't write a nice match statement or do exhaustiveness checking.
// Require literals instead.
if let DiscriminantValue::Literal(value) = range_bound_value {
return Ok(value);
}
}
die!(parent_range_expr => "When ranges are used for alternate values, both bounds most be explicitly specified numeric literals")
}
if let Expr::Range(syn::ExprRange {
start, end, limits, ..
}) = val_expr
{
let lower = range_expr_value_to_number(val_expr, start)?;
let upper = range_expr_value_to_number(val_expr, end)?;
// While this is technically allowed in Rust, and results in an empty range, it's almost certainly a mistake in this context.
if lower > upper {
die!(val_expr => "When using ranges for alternate values, upper bound must not be less than lower bound");
}
let mut values = Vec::with_capacity((upper - lower) as usize);
let mut next = lower;
loop {
match limits {
syn::RangeLimits::HalfOpen(..) => {
if next == upper {
break;
}
}
syn::RangeLimits::Closed(..) => {
if next > upper {
break;
}
}
}
values.push(DiscriminantValue::Literal(next));
next += 1;
}
return Ok(values);
}
parse_discriminant(val_expr).map(|v| vec![v])
}
#[cfg(not(feature = "complex-expressions"))]
fn parse_alternative_values(val_expr: &Expr) -> Result<Vec<DiscriminantValue>> {
parse_discriminant(val_expr).map(|v| vec![v])
}
mod kw {
syn::custom_keyword!(default);
syn::custom_keyword!(catch_all);
syn::custom_keyword!(alternatives);
}
struct NumEnumVariantAttributes {
items: syn::punctuated::Punctuated<NumEnumVariantAttributeItem, syn::Token![,]>,
}
impl Parse for NumEnumVariantAttributes {
fn parse(input: ParseStream<'_>) -> Result<Self> {
Ok(Self {
items: input.parse_terminated(NumEnumVariantAttributeItem::parse, syn::Token![,])?,
})
}
}
enum NumEnumVariantAttributeItem {
Default(VariantDefaultAttribute),
CatchAll(VariantCatchAllAttribute),
Alternatives(VariantAlternativesAttribute),
}
impl Parse for NumEnumVariantAttributeItem {
fn parse(input: ParseStream<'_>) -> Result<Self> {
let lookahead = input.lookahead1();
if lookahead.peek(kw::default) {
input.parse().map(Self::Default)
} else if lookahead.peek(kw::catch_all) {
input.parse().map(Self::CatchAll)
} else if lookahead.peek(kw::alternatives) {
input.parse().map(Self::Alternatives)
} else {
Err(lookahead.error())
}
}
}
struct VariantDefaultAttribute {
keyword: kw::default,
}
impl Parse for VariantDefaultAttribute {
fn parse(input: ParseStream) -> Result<Self> {
Ok(Self {
keyword: input.parse()?,
})
}
}
struct VariantCatchAllAttribute {
keyword: kw::catch_all,
}
impl Parse for VariantCatchAllAttribute {
fn parse(input: ParseStream) -> Result<Self> {
Ok(Self {
keyword: input.parse()?,
})
}
}
struct VariantAlternativesAttribute {
_keyword: kw::alternatives,
_eq_token: syn::Token![=],
_bracket_token: syn::token::Bracket,
expressions: syn::punctuated::Punctuated<Expr, syn::Token![,]>,
}
impl Parse for VariantAlternativesAttribute {
fn parse(input: ParseStream) -> Result<Self> {
let content;
let keyword = input.parse()?;
let _eq_token = input.parse()?;
let _bracket_token = syn::bracketed!(content in input);
let expressions = content.parse_terminated(Expr::parse, syn::Token![,])?;
Ok(Self {
_keyword: keyword,
_eq_token,
_bracket_token,
expressions,
})
}
}
struct VariantInfo {
ident: Ident,
is_default: bool,
is_catch_all: bool,
canonical_value: Expr,
alternative_values: Vec<Expr>,
}
impl VariantInfo {
fn all_values(&self) -> impl Iterator<Item = &Expr> {
::core::iter::once(&self.canonical_value).chain(self.alternative_values.iter())
}
}
struct EnumInfo {
name: Ident,
repr: Ident,
variants: Vec<VariantInfo>,
}
impl EnumInfo {
/// Returns whether the number of variants (ignoring defaults, catch-alls, etc) is the same as
/// the capacity of the repr.
fn is_naturally_exhaustive(&self) -> Result<bool> {
let repr_str = self.repr.to_string();
if !repr_str.is_empty() {
let suffix = repr_str
.strip_prefix('i')
.or_else(|| repr_str.strip_prefix('u'));
if let Some(suffix) = suffix {
if suffix == "size" {
return Ok(false);
} else if let Ok(bits) = suffix.parse::<u32>() {
let variants = 1usize.checked_shl(bits);
return Ok(variants.map_or(false, |v| {
v == self
.variants
.iter()
.map(|v| v.alternative_values.len() + 1)
.sum()
}));
}
}
}
die!(self.repr.clone() => "Failed to parse repr into bit size");
}
fn default(&self) -> Option<&Ident> {
self.variants
.iter()
.find(|info| info.is_default)
.map(|info| &info.ident)
}
fn catch_all(&self) -> Option<&Ident> {
self.variants
.iter()
.find(|info| info.is_catch_all)
.map(|info| &info.ident)
}
fn variant_idents(&self) -> Vec<Ident> {
self.variants
.iter()
.map(|variant| variant.ident.clone())
.collect()
}
fn expression_idents(&self) -> Vec<Vec<Ident>> {
self.variants
.iter()
.filter(|variant| !variant.is_catch_all)
.map(|info| {
let indices = 0..(info.alternative_values.len() + 1);
indices
.map(|index| format_ident!("{}__num_enum_{}__", info.ident, index))
.collect()
})
.collect()
}
fn variant_expressions(&self) -> Vec<Vec<Expr>> {
self.variants
.iter()
.map(|variant| variant.all_values().cloned().collect())
.collect()
}
}
impl Parse for EnumInfo {
fn parse(input: ParseStream) -> Result<Self> {
Ok({
let input: DeriveInput = input.parse()?;
let name = input.ident;
let data = match input.data {
Data::Enum(data) => data,
Data::Union(data) => die!(data.union_token => "Expected enum but found union"),
Data::Struct(data) => die!(data.struct_token => "Expected enum but found struct"),
};
let repr: Ident = {
let mut attrs = input.attrs.into_iter();
loop {
if let Some(attr) = attrs.next() {
if let Meta::List(meta_list) = &attr.meta {
if let Some(ident) = meta_list.path.get_ident() {
if ident == "repr" {
let mut nested = meta_list.tokens.clone().into_iter();
let repr = match (nested.next(), nested.next()) {
(Some(repr), None) => repr,
_ => die!(attr =>
"Expected exactly one `repr` argument"
),
};
let repr: Ident = parse_quote! {
#repr
};
if repr == "C" {
die!(repr =>
"repr(C) doesn't have a well defined size"
);
} else {
break repr;
}
}
}
}
} else {
die!("Missing `#[repr({Integer})]` attribute");
}
}
};
let mut variants: Vec<VariantInfo> = vec![];
let mut has_default_variant: bool = false;
let mut has_catch_all_variant: bool = false;
// Vec to keep track of the used discriminants and alt values.
let mut discriminant_int_val_set = BTreeSet::new();
let mut next_discriminant = literal(0);
for variant in data.variants.into_iter() {
let ident = variant.ident.clone();
let discriminant = match &variant.discriminant {
Some(d) => d.1.clone(),
None => next_discriminant.clone(),
};
let mut raw_alternative_values: Vec<Expr> = vec![];
// Keep the attribute around for better error reporting.
let mut alt_attr_ref: Vec<&Attribute> = vec![];
// `#[num_enum(default)]` is required by `#[derive(FromPrimitive)]`
// and forbidden by `#[derive(UnsafeFromPrimitive)]`, so we need to
// keep track of whether we encountered such an attribute:
let mut is_default: bool = false;
let mut is_catch_all: bool = false;
for attribute in &variant.attrs {
if attribute.path().is_ident("default") {
if has_default_variant {
die!(attribute =>
"Multiple variants marked `#[default]` or `#[num_enum(default)]` found"
);
} else if has_catch_all_variant {
die!(attribute =>
"Attribute `default` is mutually exclusive with `catch_all`"
);
}
is_default = true;
has_default_variant = true;
}
if attribute.path().is_ident("num_enum") {
match attribute.parse_args_with(NumEnumVariantAttributes::parse) {
Ok(variant_attributes) => {
for variant_attribute in variant_attributes.items {
match variant_attribute {
NumEnumVariantAttributeItem::Default(default) => {
if has_default_variant {
die!(default.keyword =>
"Multiple variants marked `#[default]` or `#[num_enum(default)]` found"
);
} else if has_catch_all_variant {
die!(default.keyword =>
"Attribute `default` is mutually exclusive with `catch_all`"
);
}
is_default = true;
has_default_variant = true;
}
NumEnumVariantAttributeItem::CatchAll(catch_all) => {
if has_catch_all_variant {
die!(catch_all.keyword =>
"Multiple variants marked with `#[num_enum(catch_all)]`"
);
} else if has_default_variant {
die!(catch_all.keyword =>
"Attribute `catch_all` is mutually exclusive with `default`"
);
}
match variant
.fields
.iter()
.collect::<Vec<_>>()
.as_slice()
{
[syn::Field {
ty: syn::Type::Path(syn::TypePath { path, .. }),
..
}] if path.is_ident(&repr) => {
is_catch_all = true;
has_catch_all_variant = true;
}
_ => {
die!(catch_all.keyword =>
"Variant with `catch_all` must be a tuple with exactly 1 field matching the repr type"
);
}
}
}
NumEnumVariantAttributeItem::Alternatives(alternatives) => {
raw_alternative_values.extend(alternatives.expressions);
alt_attr_ref.push(attribute);
}
}
}
}
Err(err) => {
if cfg!(not(feature = "complex-expressions")) {
let tokens = attribute.meta.to_token_stream();
let attribute_str = format!("{}", tokens);
if attribute_str.contains("alternatives")
&& attribute_str.contains("..")
{
// Give a nice error message suggesting how to fix the problem.
die!(attribute => "Ranges are only supported as num_enum alternate values if the `complex-expressions` feature of the crate `num_enum` is enabled".to_string())
}
}
die!(attribute =>
format!("Invalid attribute: {}", err)
);
}
}
}
}
if !is_catch_all {
match &variant.fields {
Fields::Named(_) | Fields::Unnamed(_) => {
die!(variant => format!("`{}` only supports unit variants (with no associated data), but `{}::{}` was not a unit variant.", get_crate_name(), name, ident));
}
Fields::Unit => {}
}
}
let discriminant_value = parse_discriminant(&discriminant)?;
// Check for collision.
// We can't do const evaluation, or even compare arbitrary Exprs,
// so unfortunately we can't check for duplicates.
// That's not the end of the world, just we'll end up with compile errors for
// matches with duplicate branches in generated code instead of nice friendly error messages.
if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
if discriminant_int_val_set.contains(&canonical_value_int) {
die!(ident => format!("The discriminant '{}' collides with a value attributed to a previous variant", canonical_value_int))
}
}
// Deal with the alternative values.
let mut flattened_alternative_values = Vec::new();
let mut flattened_raw_alternative_values = Vec::new();
for raw_alternative_value in raw_alternative_values {
let expanded_values = parse_alternative_values(&raw_alternative_value)?;
for expanded_value in expanded_values {
flattened_alternative_values.push(expanded_value);
flattened_raw_alternative_values.push(raw_alternative_value.clone())
}
}
if !flattened_alternative_values.is_empty() {
let alternate_int_values = flattened_alternative_values
.into_iter()
.map(|v| {
match v {
DiscriminantValue::Literal(value) => Ok(value),
DiscriminantValue::Expr(expr) => {
if let Expr::Range(_) = expr {
if cfg!(not(feature = "complex-expressions")) {
// Give a nice error message suggesting how to fix the problem.
die!(expr => "Ranges are only supported as num_enum alternate values if the `complex-expressions` feature of the crate `num_enum` is enabled".to_string())
}
}
// We can't do uniqueness checking on non-literals, so we don't allow them as alternate values.
// We could probably allow them, but there doesn't seem to be much of a use-case,
// and it's easier to give good error messages about duplicate values this way,
// rather than rustc errors on conflicting match branches.
die!(expr => "Only literals are allowed as num_enum alternate values".to_string())
},
}
})
.collect::<Result<Vec<i128>>>()?;
let mut sorted_alternate_int_values = alternate_int_values.clone();
sorted_alternate_int_values.sort_unstable();
let sorted_alternate_int_values = sorted_alternate_int_values;
// Check if the current discriminant is not in the alternative values.
if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
if let Some(index) = alternate_int_values
.iter()
.position(|&x| x == canonical_value_int)
{
die!(&flattened_raw_alternative_values[index] => format!("'{}' in the alternative values is already attributed as the discriminant of this variant", canonical_value_int));
}
}
// Search for duplicates, the vec is sorted. Warn about them.
if (1..sorted_alternate_int_values.len()).any(|i| {
sorted_alternate_int_values[i] == sorted_alternate_int_values[i - 1]
}) {
let attr = *alt_attr_ref.last().unwrap();
die!(attr => "There is duplication in the alternative values");
}
// Search if those discriminant_int_val_set where already attributed.
// (discriminant_int_val_set is BTreeSet, and iter().next_back() is the is the maximum in the set.)
if let Some(last_upper_val) = discriminant_int_val_set.iter().next_back() {
if sorted_alternate_int_values.first().unwrap() <= last_upper_val {
for (index, val) in alternate_int_values.iter().enumerate() {
if discriminant_int_val_set.contains(val) {
die!(&flattened_raw_alternative_values[index] => format!("'{}' in the alternative values is already attributed to a previous variant", val));
}
}
}
}
// Reconstruct the alternative_values vec of Expr but sorted.
flattened_raw_alternative_values = sorted_alternate_int_values
.iter()
.map(|val| literal(val.to_owned()))
.collect();
// Add the alternative values to the the set to keep track.
discriminant_int_val_set.extend(sorted_alternate_int_values);
}
// Add the current discriminant to the the set to keep track.
if let DiscriminantValue::Literal(canonical_value_int) = discriminant_value {
discriminant_int_val_set.insert(canonical_value_int);
}
variants.push(VariantInfo {
ident,
is_default,
is_catch_all,
canonical_value: discriminant,
alternative_values: flattened_raw_alternative_values,
});
// Get the next value for the discriminant.
next_discriminant = match discriminant_value {
DiscriminantValue::Literal(int_value) => literal(int_value.wrapping_add(1)),
DiscriminantValue::Expr(expr) => {
parse_quote! {
#repr::wrapping_add(#expr, 1)
}
}
}
}
EnumInfo {
name,
repr,
variants,
}
})
}
}
/// Implements `Into<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// (It actually implements `From<Enum> for Primitive`)
///
/// ## Allows turning an enum into a primitive.
///
/// ```rust
/// use num_enum::IntoPrimitive;
///
/// #[derive(IntoPrimitive)]
/// #[repr(u8)]
/// enum Number {
/// Zero,
/// One,
/// }
///
/// let zero: u8 = Number::Zero.into();
/// assert_eq!(zero, 0u8);
/// ```
#[proc_macro_derive(IntoPrimitive, attributes(num_enum, catch_all))]
pub fn derive_into_primitive(input: TokenStream) -> TokenStream {
let enum_info = parse_macro_input!(input as EnumInfo);
let catch_all = enum_info.catch_all();
let name = &enum_info.name;
let repr = &enum_info.repr;
let body = if let Some(catch_all_ident) = catch_all {
quote! {
match enum_value {
#name::#catch_all_ident(raw) => raw,
rest => unsafe { *(&rest as *const #name as *const Self) }
}
}
} else {
quote! { enum_value as Self }
};
TokenStream::from(quote! {
impl From<#name> for #repr {
#[inline]
fn from (enum_value: #name) -> Self
{
#body
}
}
})
}
/// Implements `From<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// Turning a primitive into an enum with `from`.
/// ----------------------------------------------
///
/// ```rust
/// use num_enum::FromPrimitive;
///
/// #[derive(Debug, Eq, PartialEq, FromPrimitive)]
/// #[repr(u8)]
/// enum Number {
/// Zero,
/// #[num_enum(default)]
/// NonZero,
/// }
///
/// let zero = Number::from(0u8);
/// assert_eq!(zero, Number::Zero);
///
/// let one = Number::from(1u8);
/// assert_eq!(one, Number::NonZero);
///
/// let two = Number::from(2u8);
/// assert_eq!(two, Number::NonZero);
/// ```
#[proc_macro_derive(FromPrimitive, attributes(num_enum, default, catch_all))]
pub fn derive_from_primitive(input: TokenStream) -> TokenStream {
let enum_info: EnumInfo = parse_macro_input!(input);
let krate = Ident::new(&get_crate_name(), Span::call_site());
let is_naturally_exhaustive = enum_info.is_naturally_exhaustive();
let catch_all_body = match is_naturally_exhaustive {
Ok(is_naturally_exhaustive) => {
if is_naturally_exhaustive {
quote! { unreachable!("exhaustive enum") }
} else if let Some(default_ident) = enum_info.default() {
quote! { Self::#default_ident }
} else if let Some(catch_all_ident) = enum_info.catch_all() {
quote! { Self::#catch_all_ident(number) }
} else {
let span = Span::call_site();
let message =
"#[derive(num_enum::FromPrimitive)] requires enum to be exhaustive, or a variant marked with `#[default]`, `#[num_enum(default)]`, or `#[num_enum(catch_all)`";
return syn::Error::new(span, message).to_compile_error().into();
}
}
Err(err) => {
return err.to_compile_error().into();
}
};
let EnumInfo {
ref name, ref repr, ..
} = enum_info;
let variant_idents: Vec<Ident> = enum_info.variant_idents();
let expression_idents: Vec<Vec<Ident>> = enum_info.expression_idents();
let variant_expressions: Vec<Vec<Expr>> = enum_info.variant_expressions();
debug_assert_eq!(variant_idents.len(), variant_expressions.len());
TokenStream::from(quote! {
impl ::#krate::FromPrimitive for #name {
type Primitive = #repr;
fn from_primitive(number: Self::Primitive) -> Self {
// Use intermediate const(s) so that enums defined like
// `Two = ONE + 1u8` work properly.
#![allow(non_upper_case_globals)]
#(
#(
const #expression_idents: #repr = #variant_expressions;
)*
)*
#[deny(unreachable_patterns)]
match number {
#(
#( #expression_idents )|*
=> Self::#variant_idents,
)*
#[allow(unreachable_patterns)]
_ => #catch_all_body,
}
}
}
impl ::core::convert::From<#repr> for #name {
#[inline]
fn from (
number: #repr,
) -> Self {
::#krate::FromPrimitive::from_primitive(number)
}
}
#[doc(hidden)]
impl ::#krate::CannotDeriveBothFromPrimitiveAndTryFromPrimitive for #name {}
})
}
/// Implements `TryFrom<Primitive>` for a `#[repr(Primitive)] enum`.
///
/// Attempting to turn a primitive into an enum with `try_from`.
/// ----------------------------------------------
///
/// ```rust
/// use num_enum::TryFromPrimitive;
/// use std::convert::TryFrom;
///
/// #[derive(Debug, Eq, PartialEq, TryFromPrimitive)]
/// #[repr(u8)]
/// enum Number {
/// Zero,
/// One,
/// }
///
/// let zero = Number::try_from(0u8);
/// assert_eq!(zero, Ok(Number::Zero));
///
/// let three = Number::try_from(3u8);
/// assert_eq!(
/// three.unwrap_err().to_string(),
/// "No discriminant in enum `Number` matches the value `3`",
/// );
/// ```
#[proc_macro_derive(TryFromPrimitive, attributes(num_enum))]
pub fn derive_try_from_primitive(input: TokenStream) -> TokenStream {
let enum_info: EnumInfo = parse_macro_input!(input);
let krate = Ident::new(&get_crate_name(), Span::call_site());
let EnumInfo {
ref name, ref repr, ..
} = enum_info;
let variant_idents: Vec<Ident> = enum_info.variant_idents();
let expression_idents: Vec<Vec<Ident>> = enum_info.expression_idents();
let variant_expressions: Vec<Vec<Expr>> = enum_info.variant_expressions();
debug_assert_eq!(variant_idents.len(), variant_expressions.len());
TokenStream::from(quote! {
impl ::#krate::TryFromPrimitive for #name {
type Primitive = #repr;
const NAME: &'static str = stringify!(#name);
fn try_from_primitive (
number: Self::Primitive,
) -> ::core::result::Result<
Self,
::#krate::TryFromPrimitiveError<Self>
> {
// Use intermediate const(s) so that enums defined like
// `Two = ONE + 1u8` work properly.
#![allow(non_upper_case_globals)]
#(
#(
const #expression_idents: #repr = #variant_expressions;
)*
)*
#[deny(unreachable_patterns)]
match number {
#(
#( #expression_idents )|*
=> ::core::result::Result::Ok(Self::#variant_idents),
)*
#[allow(unreachable_patterns)]
_ => ::core::result::Result::Err(
::#krate::TryFromPrimitiveError { number }
),
}
}
}
impl ::core::convert::TryFrom<#repr> for #name {
type Error = ::#krate::TryFromPrimitiveError<Self>;
#[inline]
fn try_from (
number: #repr,
) -> ::core::result::Result<Self, ::#krate::TryFromPrimitiveError<Self>>
{
::#krate::TryFromPrimitive::try_from_primitive(number)
}
}
#[doc(hidden)]
impl ::#krate::CannotDeriveBothFromPrimitiveAndTryFromPrimitive for #name {}
})
}
#[cfg(feature = "proc-macro-crate")]
fn get_crate_name() -> String {
let found_crate = proc_macro_crate::crate_name("num_enum").unwrap_or_else(|err| {
eprintln!("Warning: {}\n => defaulting to `num_enum`", err,);
proc_macro_crate::FoundCrate::Itself
});
match found_crate {
proc_macro_crate::FoundCrate::Itself => String::from("num_enum"),
proc_macro_crate::FoundCrate::Name(name) => name,
}
}
// Don't depend on proc-macro-crate in no_std environments because it causes an awkward dependency
// on serde with std.
//
// no_std dependees on num_enum cannot rename the num_enum crate when they depend on it. Sorry.
//
// See https://github.com/illicitonion/num_enum/issues/18
#[cfg(not(feature = "proc-macro-crate"))]
fn get_crate_name() -> String {
String::from("num_enum")
}
/// Generates a `unsafe fn unchecked_transmute_from(number: Primitive) -> Self`
/// associated function.
///
/// Allows unsafely turning a primitive into an enum with unchecked_transmute_from
/// ------------------------------------------------------------------------------
///
/// If you're really certain a conversion will succeed, and want to avoid a small amount of overhead, you can use unsafe
/// code to do this conversion. Unless you have data showing that the match statement generated in the `try_from` above is a
/// bottleneck for you, you should avoid doing this, as the unsafe code has potential to cause serious memory issues in
/// your program.
///
/// Note that this derive ignores any `default`, `catch_all`, and `alternatives` attributes on the enum.
/// If you need support for conversions from these values, you should use `TryFromPrimitive` or `FromPrimitive`.
///
/// ```rust
/// use num_enum::UnsafeFromPrimitive;
///
/// #[derive(Debug, Eq, PartialEq, UnsafeFromPrimitive)]
/// #[repr(u8)]
/// enum Number {
/// Zero,
/// One,
/// }
///
/// fn main() {
/// assert_eq!(
/// Number::Zero,
/// unsafe { Number::unchecked_transmute_from(0_u8) },
/// );
/// assert_eq!(
/// Number::One,
/// unsafe { Number::unchecked_transmute_from(1_u8) },
/// );
/// }
///
/// unsafe fn undefined_behavior() {
/// let _ = Number::unchecked_transmute_from(2); // 2 is not a valid discriminant!
/// }
/// ```
#[proc_macro_derive(UnsafeFromPrimitive, attributes(num_enum))]
pub fn derive_unsafe_from_primitive(stream: TokenStream) -> TokenStream {
let enum_info = parse_macro_input!(stream as EnumInfo);
let krate = Ident::new(&get_crate_name(), Span::call_site());
let EnumInfo {
ref name, ref repr, ..
} = enum_info;
TokenStream::from(quote! {
impl ::#krate::UnsafeFromPrimitive for #name {
type Primitive = #repr;
unsafe fn unchecked_transmute_from(number: Self::Primitive) -> Self {
::core::mem::transmute(number)
}
}
})
}
/// Implements `core::default::Default` for a `#[repr(Primitive)] enum`.
///
/// Whichever variant has the `#[default]` or `#[num_enum(default)]` attribute will be returned.
/// ----------------------------------------------
///
/// ```rust
/// #[derive(Debug, Eq, PartialEq, num_enum::Default)]
/// #[repr(u8)]
/// enum Number {
/// Zero,
/// #[default]
/// One,
/// }
///
/// assert_eq!(Number::One, Number::default());
/// assert_eq!(Number::One, <Number as ::core::default::Default>::default());
/// ```
#[proc_macro_derive(Default, attributes(num_enum, default))]
pub fn derive_default(stream: TokenStream) -> TokenStream {
let enum_info = parse_macro_input!(stream as EnumInfo);
let default_ident = match enum_info.default() {
Some(ident) => ident,
None => {
let span = Span::call_site();
let message =
"#[derive(num_enum::Default)] requires enum to be exhaustive, or a variant marked with `#[default]` or `#[num_enum(default)]`";
return syn::Error::new(span, message).to_compile_error().into();
}
};
let EnumInfo { ref name, .. } = enum_info;
TokenStream::from(quote! {
impl ::core::default::Default for #name {
#[inline]
fn default() -> Self {
Self::#default_ident
}
}
})
}