1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
use crate::{
aead::{Aead, AeadTag},
kdf::Kdf as KdfTrait,
kem::Kem as KemTrait,
op_mode::{OpModeR, OpModeS},
setup::{setup_receiver, setup_sender},
HpkeError,
};
use rand_core::{CryptoRng, RngCore};
// RFC 9180 §6.1
// def SealAuthPSK(pkR, info, aad, pt, psk, psk_id, skS):
// enc, ctx = SetupAuthPSKS(pkR, info, psk, psk_id, skS)
// ct = ctx.Seal(aad, pt)
// return enc, ct
/// Does a `setup_sender` and `AeadCtxS::seal_in_place_detached` in one shot. That is, it does a
/// key encapsulation to the specified recipient and encrypts the provided plaintext in place. See
/// `setup::setup_sender` and `AeadCtxS::seal_in_place_detached` for more detail.
///
/// Return Value
/// ============
/// Returns `Ok((encapped_key, auth_tag))` on success. If an error happened during key
/// encapsulation, returns `Err(HpkeError::EncapError)`. If an error happened during encryption,
/// returns `Err(HpkeError::SealError)`. In this case, the contents of `plaintext` is undefined.
pub fn single_shot_seal_in_place_detached<A, Kdf, Kem, R>(
mode: &OpModeS<Kem>,
pk_recip: &Kem::PublicKey,
info: &[u8],
plaintext: &mut [u8],
aad: &[u8],
csprng: &mut R,
) -> Result<(Kem::EncappedKey, AeadTag<A>), HpkeError>
where
A: Aead,
Kdf: KdfTrait,
Kem: KemTrait,
R: CryptoRng + RngCore,
{
// Encap a key
let (encapped_key, mut aead_ctx) =
setup_sender::<A, Kdf, Kem, R>(mode, pk_recip, info, csprng)?;
// Encrypt
let tag = aead_ctx.seal_in_place_detached(plaintext, aad)?;
Ok((encapped_key, tag))
}
/// Does a `setup_sender` and `AeadCtxS::seal` in one shot. That is, it does a key encapsulation to
/// the specified recipient and encrypts the provided plaintext. See `setup::setup_sender` and
/// `AeadCtxS::seal` for more detail.
///
/// Return Value
/// ============
/// Returns `Ok((encapped_key, ciphertext))` on success. If an error happened during key
/// encapsulation, returns `Err(HpkeError::EncapError)`. If an error happened during encryption,
/// returns `Err(HpkeError::SealError)`.
#[cfg_attr(docsrs, doc(cfg(any(feature = "alloc", feature = "std"))))]
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn single_shot_seal<A, Kdf, Kem, R>(
mode: &OpModeS<Kem>,
pk_recip: &Kem::PublicKey,
info: &[u8],
plaintext: &[u8],
aad: &[u8],
csprng: &mut R,
) -> Result<(Kem::EncappedKey, crate::Vec<u8>), HpkeError>
where
A: Aead,
Kdf: KdfTrait,
Kem: KemTrait,
R: CryptoRng + RngCore,
{
// Encap a key
let (encapped_key, mut aead_ctx) =
setup_sender::<A, Kdf, Kem, R>(mode, pk_recip, info, csprng)?;
// Encrypt
let ciphertext = aead_ctx.seal(plaintext, aad)?;
Ok((encapped_key, ciphertext))
}
// RFC 9180 §6.1
// def OpenAuthPSK(enc, skR, info, aad, ct, psk, psk_id, pkS):
// ctx = SetupAuthPSKR(enc, skR, info, psk, psk_id, pkS)
// return ctx.Open(aad, ct)
/// Does a `setup_receiver` and `AeadCtxR::open_in_place_detached` in one shot. That is, it does a
/// key decapsulation for the specified recipient and decrypts the provided ciphertext in place.
/// See `setup::setup_reciever` and `AeadCtxR::open_in_place_detached` for more detail.
///
/// Return Value
/// ============
/// Returns `Ok()` on success. If an error happened during key decapsulation, returns
/// `Err(HpkeError::DecapError)`. If an error happened during decryption, returns
/// `Err(HpkeError::OpenError)`. In this case, the contents of `ciphertext` is undefined.
pub fn single_shot_open_in_place_detached<A, Kdf, Kem>(
mode: &OpModeR<Kem>,
sk_recip: &Kem::PrivateKey,
encapped_key: &Kem::EncappedKey,
info: &[u8],
ciphertext: &mut [u8],
aad: &[u8],
tag: &AeadTag<A>,
) -> Result<(), HpkeError>
where
A: Aead,
Kdf: KdfTrait,
Kem: KemTrait,
{
// Decap the key
let mut aead_ctx = setup_receiver::<A, Kdf, Kem>(mode, sk_recip, encapped_key, info)?;
// Decrypt
aead_ctx.open_in_place_detached(ciphertext, aad, tag)
}
/// Does a `setup_receiver` and `AeadCtxR::open` in one shot. That is, it does a key decapsulation
/// for the specified recipient and decrypts the provided ciphertext. See `setup::setup_reciever`
/// and `AeadCtxR::open` for more detail.
///
/// Return Value
/// ============
/// Returns `Ok(plaintext)` on success. If an error happened during key decapsulation, returns
/// `Err(HpkeError::DecapError)`. If an error happened during decryption, returns
/// `Err(HpkeError::OpenError)`.
#[cfg_attr(docsrs, doc(cfg(any(feature = "alloc", feature = "std"))))]
#[cfg(any(feature = "alloc", feature = "std"))]
pub fn single_shot_open<A, Kdf, Kem>(
mode: &OpModeR<Kem>,
sk_recip: &Kem::PrivateKey,
encapped_key: &Kem::EncappedKey,
info: &[u8],
ciphertext: &[u8],
aad: &[u8],
) -> Result<crate::Vec<u8>, HpkeError>
where
A: Aead,
Kdf: KdfTrait,
Kem: KemTrait,
{
// Decap the key
let mut aead_ctx = setup_receiver::<A, Kdf, Kem>(mode, sk_recip, encapped_key, info)?;
// Decrypt
aead_ctx.open(ciphertext, aad)
}
#[cfg(any(feature = "alloc", feature = "std"))]
#[cfg(test)]
mod test {
use super::*;
use crate::{
aead::ChaCha20Poly1305,
kdf::HkdfSha256,
kem::Kem as KemTrait,
op_mode::{OpModeR, OpModeS, PskBundle},
test_util::gen_rand_buf,
};
use rand::{rngs::StdRng, SeedableRng};
macro_rules! test_single_shot_correctness {
($test_name:ident, $aead:ty, $kdf:ty, $kem:ty) => {
/// Tests that `single_shot_open` can open a `single_shot_seal` ciphertext. This
/// doens't need to be tested for all ciphersuite combinations, since its correctness
/// follows from the correctness of `seal/open` and `setup_sender/setup_receiver`.
#[test]
fn $test_name() {
type A = $aead;
type Kdf = $kdf;
type Kem = $kem;
let msg = b"Good night, a-ding ding ding ding ding";
let aad = b"Five four three two one";
let mut csprng = StdRng::from_entropy();
// Set up an arbitrary info string, a random PSK, and an arbitrary PSK ID
let info = b"why would you think in a million years that that would actually work";
let (psk, psk_id) = (gen_rand_buf(), gen_rand_buf());
let psk_bundle = PskBundle {
psk: &psk,
psk_id: &psk_id,
};
// Generate the sender's and receiver's long-term keypairs
let (sk_sender_id, pk_sender_id) = Kem::gen_keypair(&mut csprng);
let (sk_recip, pk_recip) = Kem::gen_keypair(&mut csprng);
// Construct the sender's encryption context, and get an encapped key
let sender_mode = OpModeS::<Kem>::AuthPsk(
(sk_sender_id, pk_sender_id.clone()),
psk_bundle.clone(),
);
// Use the encapped key to derive the reciever's encryption context
let receiver_mode = OpModeR::<Kem>::AuthPsk(pk_sender_id, psk_bundle);
// Encrypt with the first context
let (encapped_key, ciphertext) = single_shot_seal::<A, Kdf, Kem, _>(
&sender_mode,
&pk_recip,
info,
msg,
aad,
&mut csprng,
)
.expect("single_shot_seal() failed");
// Make sure seal() isn't a no-op
assert!(&ciphertext[..] != &msg[..]);
// Decrypt with the second context
let decrypted = single_shot_open::<A, Kdf, Kem>(
&receiver_mode,
&sk_recip,
&encapped_key,
info,
&ciphertext,
aad,
)
.expect("single_shot_open() failed");
assert_eq!(&decrypted, &msg);
}
};
}
#[cfg(feature = "x25519")]
test_single_shot_correctness!(
test_single_shot_correctness_x25519,
ChaCha20Poly1305,
HkdfSha256,
crate::kem::x25519_hkdfsha256::X25519HkdfSha256
);
#[cfg(feature = "p256")]
test_single_shot_correctness!(
test_single_shot_correctness_p256,
ChaCha20Poly1305,
HkdfSha256,
crate::kem::dhp256_hkdfsha256::DhP256HkdfSha256
);
}