1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/// Defines DHKEM(G, K) given a Diffie-Hellman group G and KDF K
macro_rules! impl_dhkem {
(
$mod_name:ident,
$kem_name:ident,
$dhkex:ty,
$kdf:ty,
$kem_id:literal,
$doc_str:expr
) => {
// Export everything from the crate we define
pub use $mod_name::*;
pub(crate) mod $mod_name {
use crate::{
dhkex::{DhKeyExchange, MAX_PUBKEY_SIZE},
kdf::{extract_and_expand, Kdf as KdfTrait},
kem::{Kem as KemTrait, SharedSecret},
util::kem_suite_id,
Deserializable, HpkeError, Serializable,
};
use digest::OutputSizeUser;
use generic_array::GenericArray;
use rand_core::{CryptoRng, RngCore};
// Define convenience types
type PublicKey = <$dhkex as DhKeyExchange>::PublicKey;
type PrivateKey = <$dhkex as DhKeyExchange>::PrivateKey;
// RFC 9180 §4.1
// The function parameters pkR and pkS are deserialized public keys, and enc is a
// serialized public key. Since encapsulated keys are Diffie-Hellman public keys in
// this KEM algorithm, we use SerializePublicKey() and DeserializePublicKey() to
// encode and decode them, respectively. Npk equals Nenc.
/// Holds the content of an encapsulated secret. This is what the receiver uses to
/// derive the shared secret. This just wraps a pubkey, because that's all an
/// encapsulated key is in a DHKEM.
#[doc(hidden)]
#[derive(Clone)]
pub struct EncappedKey(pub(crate) <$dhkex as DhKeyExchange>::PublicKey);
// EncappedKeys need to be serializable, since they're gonna be sent over the wire.
// Underlyingly, they're just DH pubkeys, so we just serialize them the same way
impl Serializable for EncappedKey {
type OutputSize = <<$dhkex as DhKeyExchange>::PublicKey as Serializable>::OutputSize;
// Pass to underlying to_bytes() impl
fn to_bytes(&self) -> GenericArray<u8, Self::OutputSize> {
self.0.to_bytes()
}
}
impl Deserializable for EncappedKey {
// Pass to underlying from_bytes() impl
fn from_bytes(encoded: &[u8]) -> Result<Self, HpkeError> {
let pubkey =
<<$dhkex as DhKeyExchange>::PublicKey as Deserializable>::from_bytes(encoded)?;
Ok(EncappedKey(pubkey))
}
}
// Define the KEM struct
#[doc = $doc_str]
pub struct $kem_name;
// RFC 9180 §4.1
// def Encap(pkR):
// skE, pkE = GenerateKeyPair()
// dh = DH(skE, pkR)
// enc = SerializePublicKey(pkE)
//
// pkRm = SerializePublicKey(pkR)
// kem_context = concat(enc, pkRm)
//
// def AuthEncap(pkR, skS):
// skE, pkE = GenerateKeyPair()
// dh = concat(DH(skE, pkR), DH(skS, pkR))
// enc = SerializePublicKey(pkE)
//
// pkRm = SerializePublicKey(pkR)
// pkSm = SerializePublicKey(pk(skS))
// kem_context = concat(enc, pkRm, pkSm)
//
// shared_secret = ExtractAndExpand(dh, kem_context)
// return shared_secret, enc
// The reason we define encap_with_eph() rather than just encap() is because we need to
// use deterministic ephemeral keys in the known-answer tests. So we define a function
// here, then use it to impl kem::Kem and kat_tests::TestableKem.
/// Derives a shared secret that the owner of the recipient's pubkey can use to derive
/// the same shared secret. If `sk_sender_id` is given, the sender's identity will be
/// tied to the shared secret.
///
/// Return Value
/// ============
/// Returns a shared secret and encapped key on success. If an error happened during
/// key exchange, returns `Err(HpkeError::EncapError)`.
#[doc(hidden)]
pub(crate) fn encap_with_eph(
pk_recip: &PublicKey,
sender_id_keypair: Option<(&PrivateKey, &PublicKey)>,
sk_eph: PrivateKey,
) -> Result<(SharedSecret<$kem_name>, EncappedKey), HpkeError> {
// Put together the binding context used for all KDF operations
let suite_id = kem_suite_id::<$kem_name>();
// Compute the shared secret from the ephemeral inputs
let kex_res_eph = <$dhkex as DhKeyExchange>::dh(&sk_eph, pk_recip)
.map_err(|_| HpkeError::EncapError)?;
// The encapped key is the ephemeral pubkey
let encapped_key = {
let pk_eph = <$dhkex as DhKeyExchange>::sk_to_pk(&sk_eph);
EncappedKey(pk_eph)
};
// The shared secret is either gonna be kex_res_eph, or that along with another
// shared secret that's tied to the sender's identity.
let shared_secret = if let Some((sk_sender_id, pk_sender_id)) = sender_id_keypair {
// kem_context = encapped_key || pk_recip || pk_sender_id
// We concat without allocation by making a buffer of the maximum possible
// size, then taking the appropriately sized slice.
let (kem_context_buf, kem_context_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&encapped_key.to_bytes(),
&pk_recip.to_bytes(),
&pk_sender_id.to_bytes()
);
let kem_context = &kem_context_buf[..kem_context_size];
// We want to do an authed encap. Do a DH exchange between the sender identity
// secret key and the recipient's pubkey
let kex_res_identity = <$dhkex as DhKeyExchange>::dh(sk_sender_id, pk_recip)
.map_err(|_| HpkeError::EncapError)?;
// concatted_secrets = kex_res_eph || kex_res_identity
// Same no-alloc concat trick as above
let (concatted_secrets_buf, concatted_secret_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&kex_res_eph.to_bytes(),
&kex_res_identity.to_bytes()
);
let concatted_secrets = &concatted_secrets_buf[..concatted_secret_size];
// The "authed shared secret" is derived from the KEX of the ephemeral input
// with the recipient pubkey, and the KEX of the identity input with the
// recipient pubkey. The HKDF-Expand call only errors if the output values are
// 255x the digest size of the hash function. Since these values are fixed at
// compile time, we don't worry about it.
let mut buf = <SharedSecret<$kem_name> as Default>::default();
extract_and_expand::<$kdf>(concatted_secrets, &suite_id, kem_context, &mut buf.0)
.expect("shared secret is way too big");
buf
} else {
// kem_context = encapped_key || pk_recip
// We concat without allocation by making a buffer of the maximum possible
// size, then taking the appropriately sized slice.
let (kem_context_buf, kem_context_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&encapped_key.to_bytes(),
&pk_recip.to_bytes()
);
let kem_context = &kem_context_buf[..kem_context_size];
// The "unauthed shared secret" is derived from just the KEX of the ephemeral
// input with the recipient pubkey. The HKDF-Expand call only errors if the
// output values are 255x the digest size of the hash function. Since these
// values are fixed at compile time, we don't worry about it.
let mut buf = <SharedSecret<$kem_name> as Default>::default();
extract_and_expand::<$kdf>(
&kex_res_eph.to_bytes(),
&suite_id,
kem_context,
&mut buf.0,
)
.expect("shared secret is way too big");
buf
};
Ok((shared_secret, encapped_key))
}
impl KemTrait for $kem_name {
// RFC 9180 §4.1
// For the variants of DHKEM defined in this document, the size Nsecret of the
// KEM shared secret is equal to the output length of the hash function underlying
// the KDF.
/// The size of the shared secret at the end of the key exchange process
#[doc(hidden)]
type NSecret = <<$kdf as KdfTrait>::HashImpl as OutputSizeUser>::OutputSize;
type PublicKey = PublicKey;
type PrivateKey = PrivateKey;
type EncappedKey = EncappedKey;
const KEM_ID: u16 = $kem_id;
/// Deterministically derives a keypair from the given input keying material
///
/// Requirements
/// ============
/// This keying material SHOULD have as many bits of entropy as the bit length of a
/// secret key, i.e., `8 * Self::PrivateKey::size()`. For X25519 and P-256, this is
/// 256 bits of entropy.
fn derive_keypair(ikm: &[u8]) -> (Self::PrivateKey, Self::PublicKey) {
let suite_id = kem_suite_id::<Self>();
<$dhkex as DhKeyExchange>::derive_keypair::<$kdf>(&suite_id, ikm)
}
// Runs encap_with_eph using a random ephemeral key
fn encap<R: CryptoRng + RngCore>(
pk_recip: &Self::PublicKey,
sender_id_keypair: Option<(&Self::PrivateKey, &Self::PublicKey)>,
csprng: &mut R,
) -> Result<(SharedSecret<Self>, Self::EncappedKey), HpkeError> {
// Generate a new ephemeral key
let (sk_eph, _) = Self::gen_keypair(csprng);
// Now pass to encap_with_eph()
encap_with_eph(pk_recip, sender_id_keypair, sk_eph)
}
// RFC 9180 §4.1
// def Decap(enc, skR):
// pkE = DeserializePublicKey(enc)
// dh = DH(skR, pkE)
//
// pkRm = SerializePublicKey(pk(skR))
// kem_context = concat(enc, pkRm)
//
// shared_secret = ExtractAndExpand(dh, kem_context)
// return shared_secret
//
// def AuthDecap(enc, skR, pkS):
// pkE = DeserializePublicKey(enc)
// dh = concat(DH(skR, pkE), DH(skR, pkS))
//
// pkRm = SerializePublicKey(pk(skR))
// pkSm = SerializePublicKey(pkS)
// kem_context = concat(enc, pkRm, pkSm)
//
// shared_secret = ExtractAndExpand(dh, kem_context)
// return shared_secret
/// Derives a shared secret given the encapsulated key and the recipients secret key.
/// If `pk_sender_id` is given, the sender's identity will be tied to the shared
/// secret.
///
/// Return Value
/// ============
/// Returns a shared secret on success. If an error happened during key exchange,
/// returns `Err(HpkeError::DecapError)`.
#[doc(hidden)]
fn decap(
sk_recip: &Self::PrivateKey,
pk_sender_id: Option<&Self::PublicKey>,
encapped_key: &Self::EncappedKey,
) -> Result<SharedSecret<Self>, HpkeError> {
// Put together the binding context used for all KDF operations
let suite_id = kem_suite_id::<Self>();
// Compute the shared secret from the ephemeral inputs
let kex_res_eph = <$dhkex as DhKeyExchange>::dh(sk_recip, &encapped_key.0)
.map_err(|_| HpkeError::DecapError)?;
// Compute the sender's pubkey from their privkey
let pk_recip = <$dhkex as DhKeyExchange>::sk_to_pk(sk_recip);
// The shared secret is either gonna be kex_res_eph, or that along with another
// shared secret that's tied to the sender's identity.
if let Some(pk_sender_id) = pk_sender_id {
// kem_context = encapped_key || pk_recip || pk_sender_id We concat without
// allocation by making a buffer of the maximum possible size, then taking the
// appropriately sized slice.
let (kem_context_buf, kem_context_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&encapped_key.to_bytes(),
&pk_recip.to_bytes(),
&pk_sender_id.to_bytes()
);
let kem_context = &kem_context_buf[..kem_context_size];
// We want to do an authed encap. Do a DH exchange between the sender identity
// secret key and the recipient's pubkey
let kex_res_identity = <$dhkex as DhKeyExchange>::dh(sk_recip, pk_sender_id)
.map_err(|_| HpkeError::DecapError)?;
// concatted_secrets = kex_res_eph || kex_res_identity
// Same no-alloc concat trick as above
let (concatted_secrets_buf, concatted_secret_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&kex_res_eph.to_bytes(),
&kex_res_identity.to_bytes()
);
let concatted_secrets = &concatted_secrets_buf[..concatted_secret_size];
// The "authed shared secret" is derived from the KEX of the ephemeral input
// with the recipient pubkey, and the kex of the identity input with the
// recipient pubkey. The HKDF-Expand call only errors if the output values are
// 255x the digest size of the hash function. Since these values are fixed at
// compile time, we don't worry about it.
let mut shared_secret = <SharedSecret<Self> as Default>::default();
extract_and_expand::<$kdf>(
concatted_secrets,
&suite_id,
kem_context,
&mut shared_secret.0,
)
.expect("shared secret is way too big");
Ok(shared_secret)
} else {
// kem_context = encapped_key || pk_recip || pk_sender_id
// We concat without allocation by making a buffer of the maximum possible
// size, then taking the appropriately sized slice.
let (kem_context_buf, kem_context_size) = concat_with_known_maxlen!(
MAX_PUBKEY_SIZE,
&encapped_key.to_bytes(),
&pk_recip.to_bytes()
);
let kem_context = &kem_context_buf[..kem_context_size];
// The "unauthed shared secret" is derived from just the KEX of the ephemeral
// input with the recipient pubkey. The HKDF-Expand call only errors if the
// output values are 255x the digest size of the hash function. Since these
// values are fixed at compile time, we don't worry about it.
let mut shared_secret = <SharedSecret<Self> as Default>::default();
extract_and_expand::<$kdf>(
&kex_res_eph.to_bytes(),
&suite_id,
kem_context,
&mut shared_secret.0,
)
.expect("shared secret is way too big");
Ok(shared_secret)
}
}
}
}
};
}
// Implement DHKEM(X25519, HKDF-SHA256)
#[cfg(feature = "x25519-dalek")]
impl_dhkem!(
x25519_hkdfsha256,
X25519HkdfSha256,
crate::dhkex::x25519::X25519,
crate::kdf::HkdfSha256,
0x0020,
"Represents DHKEM(X25519, HKDF-SHA256)"
);
// Implement DHKEM(P-256, HKDF-SHA256)
#[cfg(feature = "p256")]
impl_dhkem!(
dhp256_hkdfsha256,
DhP256HkdfSha256,
crate::dhkex::ecdh_nistp::DhP256,
crate::kdf::HkdfSha256,
0x0010,
"Represents DHKEM(P-256, HKDF-SHA256)"
);