1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
//! Traits and structs for key encapsulation mechanisms
use crate::{Deserializable, HpkeError, Serializable};
use generic_array::{ArrayLength, GenericArray};
use rand_core::{CryptoRng, RngCore};
use zeroize::Zeroize;
mod dhkem;
pub use dhkem::*;
#[cfg(feature = "serde_impls")]
use serde::{Deserialize as SerdeDeserialize, Serialize as SerdeSerialize};
/// Represents authenticated encryption functionality
pub trait Kem: Sized {
/// The key exchange's public key type. If you want to generate a keypair, see
/// `Kem::gen_keypair` or `Kem::derive_keypair`
#[cfg(feature = "serde_impls")]
type PublicKey: Clone
+ Serializable
+ Deserializable
+ SerdeSerialize
+ for<'a> SerdeDeserialize<'a>;
/// The key exchange's public key type. If you want to generate a keypair, see
/// `Kem::gen_keypair` or `Kem::derive_keypair`
#[cfg(not(feature = "serde_impls"))]
type PublicKey: Clone + Serializable + Deserializable;
/// The key exchange's private key type. If you want to generate a keypair, see
/// `Kem::gen_keypair` or `Kem::derive_keypair`
#[cfg(feature = "serde_impls")]
type PrivateKey: Clone
+ Serializable
+ Deserializable
+ SerdeSerialize
+ for<'a> SerdeDeserialize<'a>;
/// The key exchange's private key type. If you want to generate a keypair, see
/// `Kem::gen_keypair` or `Kem::derive_keypair`
#[cfg(not(feature = "serde_impls"))]
type PrivateKey: Clone + Serializable + Deserializable;
/// The encapsulated key for this KEM. This is used by the recipient to derive the shared
/// secret.
#[cfg(feature = "serde_impls")]
type EncappedKey: Clone
+ Serializable
+ Deserializable
+ SerdeSerialize
+ for<'a> SerdeDeserialize<'a>;
/// The encapsulated key for this KEM. This is used by the recipient to derive the shared
/// secret.
#[cfg(not(feature = "serde_impls"))]
type EncappedKey: Clone + Serializable + Deserializable;
/// The size of a shared secret in this KEM
#[doc(hidden)]
type NSecret: ArrayLength<u8>;
/// The algorithm identifier for a KEM implementation
const KEM_ID: u16;
/// Deterministically derives a keypair from the given input keying material
///
/// Requirements
/// ============
/// This keying material SHOULD have as many bits of entropy as the bit length of a secret key,
/// i.e., `8 * Self::PrivateKey::size()`. For X25519 and P-256, this is 256 bits of
/// entropy.
fn derive_keypair(ikm: &[u8]) -> (Self::PrivateKey, Self::PublicKey);
/// Generates a random keypair using the given RNG
fn gen_keypair<R: CryptoRng + RngCore>(csprng: &mut R) -> (Self::PrivateKey, Self::PublicKey) {
// Make some keying material that's the size of a private key
let mut ikm: GenericArray<u8, <Self::PrivateKey as Serializable>::OutputSize> =
GenericArray::default();
// Fill it with randomness
csprng.fill_bytes(&mut ikm);
// Run derive_keypair using the KEM's KDF
Self::derive_keypair(&ikm)
}
/// Derives a shared secret given the encapsulated key and the recipients secret key. If
/// `pk_sender_id` is given, the sender's identity will be tied to the shared secret.
///
/// Return Value
/// ============
/// Returns a shared secret on success. If an error happened during key exchange, returns
/// `Err(HpkeError::DecapError)`.
#[doc(hidden)]
fn decap(
sk_recip: &Self::PrivateKey,
pk_sender_id: Option<&Self::PublicKey>,
encapped_key: &Self::EncappedKey,
) -> Result<SharedSecret<Self>, HpkeError>;
/// Derives a shared secret and an ephemeral pubkey that the owner of the reciepint's pubkey
/// can use to derive the same shared secret. If `sk_sender_id` is given, the sender's identity
/// will be tied to the shared secret. All this does is generate an ephemeral keypair and pass
/// to `encap_with_eph`.
///
/// Return Value
/// ============
/// Returns a shared secret and encapped key on success. If an error happened during key
/// exchange, returns `Err(HpkeError::EncapError)`.
#[doc(hidden)]
fn encap<R: CryptoRng + RngCore>(
pk_recip: &Self::PublicKey,
sender_id_keypair: Option<(&Self::PrivateKey, &Self::PublicKey)>,
csprng: &mut R,
) -> Result<(SharedSecret<Self>, Self::EncappedKey), HpkeError>;
}
// Kem is used as a type parameter everywhere. To avoid confusion, alias it
use Kem as KemTrait;
/// A convenience type for `[u8; NSecret]` for any given KEM
#[doc(hidden)]
pub struct SharedSecret<Kem: KemTrait>(pub GenericArray<u8, Kem::NSecret>);
impl<Kem: KemTrait> Default for SharedSecret<Kem> {
fn default() -> SharedSecret<Kem> {
SharedSecret(GenericArray::<u8, Kem::NSecret>::default())
}
}
// SharedSecrets should zeroize on drop
impl<Kem: KemTrait> Zeroize for SharedSecret<Kem> {
fn zeroize(&mut self) {
self.0.zeroize()
}
}
impl<Kem: KemTrait> Drop for SharedSecret<Kem> {
fn drop(&mut self) {
self.zeroize();
}
}
#[cfg(test)]
mod tests {
use crate::{kem::Kem as KemTrait, Deserializable, Serializable};
use rand::{rngs::StdRng, SeedableRng};
macro_rules! test_encap_correctness {
($test_name:ident, $kem_ty:ty) => {
/// Tests that encap and decap produce the same shared secret when composed
#[test]
fn $test_name() {
type Kem = $kem_ty;
let mut csprng = StdRng::from_entropy();
let (sk_recip, pk_recip) = Kem::gen_keypair(&mut csprng);
// Encapsulate a random shared secret
let (auth_shared_secret, encapped_key) =
Kem::encap(&pk_recip, None, &mut csprng).unwrap();
// Decap it
let decapped_auth_shared_secret =
Kem::decap(&sk_recip, None, &encapped_key).unwrap();
// Ensure that the encapsulated secret is what decap() derives
assert_eq!(auth_shared_secret.0, decapped_auth_shared_secret.0);
//
// Now do it with the auth, i.e., using the sender's identity keys
//
// Make a sender identity keypair
let (sk_sender_id, pk_sender_id) = Kem::gen_keypair(&mut csprng);
// Encapsulate a random shared secret
let (auth_shared_secret, encapped_key) = Kem::encap(
&pk_recip,
Some((&sk_sender_id, &pk_sender_id.clone())),
&mut csprng,
)
.unwrap();
// Decap it
let decapped_auth_shared_secret =
Kem::decap(&sk_recip, Some(&pk_sender_id), &encapped_key).unwrap();
// Ensure that the encapsulated secret is what decap() derives
assert_eq!(auth_shared_secret.0, decapped_auth_shared_secret.0);
}
};
}
/// Tests that an deserialize-serialize round trip on an encapped key ends up at the same value
macro_rules! test_encapped_serialize {
($test_name:ident, $kem_ty:ty) => {
#[test]
fn $test_name() {
type Kem = $kem_ty;
// Encapsulate a random shared secret
let encapped_key = {
let mut csprng = StdRng::from_entropy();
let (_, pk_recip) = Kem::gen_keypair(&mut csprng);
Kem::encap(&pk_recip, None, &mut csprng).unwrap().1
};
// Serialize it
let encapped_key_bytes = encapped_key.to_bytes();
// Deserialize it
let new_encapped_key =
<<Kem as KemTrait>::EncappedKey as Deserializable>::from_bytes(
&encapped_key_bytes,
)
.unwrap();
assert_eq!(
new_encapped_key.0, encapped_key.0,
"encapped key doesn't serialize correctly"
);
}
};
}
#[cfg(feature = "x25519-dalek")]
mod x25519_tests {
use super::*;
test_encap_correctness!(test_encap_correctness_x25519, crate::kem::X25519HkdfSha256);
test_encapped_serialize!(test_encapped_serialize_x25519, crate::kem::X25519HkdfSha256);
}
#[cfg(feature = "p256")]
mod p256_tests {
use super::*;
test_encap_correctness!(test_encap_correctness_p256, crate::kem::DhP256HkdfSha256);
test_encapped_serialize!(test_encapped_serialize_p256, crate::kem::DhP256HkdfSha256);
}
}